Updating search results...

Search Resources

68 Results

View
Selected filters:
  • Genetics
Bacteria Transformation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
Date Added:
09/18/2014
The Benefits of Biodiversity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students toss coins to determine what traits a set of mouse parents possess, such as fur color, body size, heat tolerance, and running speed. Then they use coin tossing to determine the traits a mouse pup born to these parents possesses. Then they compare these physical features to features that would be most adaptive in several different environmental conditions. Finally, students consider what would happen to the mouse offspring if those environmental conditions were to change: which mice would be most likely to survive and produce the next generation?

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Bioethics, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course does not seek to provide answers to ethical questions. Instead, the course hopes to teach students two things. First, how do you recognize ethical or moral problems in science and medicine? When something does not feel right (whether cloning, or failing to clone) ‰ŰÓ what exactly is the nature of the discomfort? What kind of tensions and conflicts exist within biomedicine? Second, how can you think productively about ethical and moral problems? What processes create them? Why do people disagree about them? How can an understanding of philosophy or history help resolve them? By the end of the course students will hopefully have sophisticated and nuanced ideas about problems in bioethics, even if they do not have comfortable answers.

Subject:
Arts and Humanities
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hare, Caspar
Jones, David
Date Added:
01/01/2009
Biotechnology: Can It Help in Making the Desert Green?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video introduces high school students to a topic they would not ordinarily study in school, biotechnology, and to different applications of biotechnology that relate to the main theme of the module - making the desert greener. After reviewing traditional methods used for manipulating plants to produce desired traits, students will learn about the methods of making transgenic plants. Dr. Ziad discusses a real world problem that is critical in his country, Jordan, where much of the land is desert. A prerequisite to this video lesson is some background in biology.

Subject:
Botany
Genetics
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Ziad W. Jaradat, PhD
Date Added:
07/02/2021
Bug Hunt
Read the Fine Print
Educational Use
Rating
0.0 stars

“Bug Hunt” uses NetLogo software and simulates an insect population that is preyed on by birds. There are six speeds of bugs from slow to fast and the bird tries to catch as many insects as possible in a certain amount of time. Students are able to see the results graphed as the average insect speed over time, the current bug population and the number of insects caught. There are two variations to try for the predator, one where the predator pursues the prey and one where the predator stays still and captures insects that pass nearby. In the first case the “bird” catches the slow insects and the faster ones survive, reproduce and pass genes on. The average speed of bug should increase over time. In the second case the faster bugs come near to the bird more often than the slow ones. The slow ones survive more, reproduce and pass their genes on.

Subject:
Biology
Genetics
Life Science
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Author:
Wilensky, Uri
Date Added:
07/07/2021
Chemicals in the Environment: Toxicology and Public Health (BE.104J), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.

Subject:
Applied Science
Environmental Science
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sherley, James
Date Added:
01/01/2005
Classifying Animals by Appearance Versus DNA Sequence
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The topic of this video module is how to classify animals based on how closely related they are. The main learning objective is that students will learn how to make phylogenetic trees based on both physical characteristics and on DNA sequence. Students will also learn why the objective and quantitative nature of DNA sequencing is preferable when it come to classifying animals based on how closely related they are. Knowledge prerequisites to this lesson include that students have some understanding of what DNA is and that they have a familiarity with the base-pairing rules and with writing a DNA sequence.

Subject:
Biology
Genetics
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Megan E. Rokop
Date Added:
07/02/2021
Clipbirds
Read the Fine Print
Educational Use
Rating
0.0 stars

This variation on the classic bird beak activity demonstrates variation of beak size within a population and shows how the proportion of big-, medium-, and small-beaked birds changes in response to the available types of food. The “birds” with binder clip “beaks” live in Clipland where the large population becomes divided into two smaller populations by a mountain range. Popcorn, lima beans and marbles are the three types of food available in the two areas. Food is spread out for the birds to eat and then after 15 seconds it is counted to see whether birds have gathered enough food to survive. The big billed birds need to eat more than the medium and small billed birds to survive and each bird needs to eat more than the minimum amount of food for survival to be able to reproduce. Four years pass during the simulation and students are asked to describe what happened to the Clipbird populations and what they think caused the changes. A link to Rosemary and Peter Grant’s research on finch populations in the Galapagos is identified for those teachers who want to connect the simulation to a real life example.

Subject:
Biology
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Author:
Al Janulaw, Judy Scotchmoor
Date Added:
07/07/2021
Cognitive and Behavioral Genetics, Spring 2001
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.

Subject:
Biology
Genetics
Life Science
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Nedivi, Elly
Pinker, Steve
Date Added:
01/01/2001
Color Variation over Time in Rock Pocket Mouse Populations
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity provides an introduction to natural selection and the role of genetic variation by asking students to analyze illustrations of rock pocket mouse populations (dark/light fur) on different color substrates in the Sonoran Desert (light/dark) over time. Based on this evidence, and what they learn about variation and natural selection in the accompanying short film, students use this evidence to explain the change in the rock pocket mouse populations on the lava flow (dark substrate) over time. This is one of several classroom activities, focusing on related topics and varying in complexity, built around the short film. This ten minute film shows adaptive changes in rock pocket mouse populations, demonstrating the process of natural selection and can be accessed at http://www.hhmi.org/biointeractive/making-fittest-natural-selection-and-adaptation. The film is also available as an interactive video with embedded questions, which test students’ understanding as they watch the film.

Subject:
Genetics
Life Science
Material Type:
Lesson Plan
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Author:
Mary Colvard
Date Added:
07/07/2021
Computation for Biological Engineers, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the analytical, graphical, and numerical methods supporting the analysis and design of integrated biological systems. Topics include modularity and abstraction in biological systems, mathematical encoding of detailed physical problems, numerical methods for solving the dynamics of continuous and discrete chemical systems, statistics and probability in dynamic systems, applied local and global optimization, simple feedback and control analysis, statistics and probability in pattern recognition.

Subject:
Genetics
Life Science
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Alm, Eric
Date Added:
01/01/2006
DNA Build
Read the Fine Print
Educational Use
Rating
0.0 stars

Students reinforce their knowledge that DNA is the genetic material for all living things by modeling it using toothpicks and gumdrops that represent the four biochemicals (adenine, thiamine, guanine, and cytosine) that pair with each other in a specific pattern, making a double helix. They investigate specific DNA sequences that code for certain physical characteristics such as eye and hair color. Student teams trade DNA "strands" and de-code the genetic sequences to determine the physical characteristics (phenotype) displayed by the strands (genotype) from other groups. Students extend their knowledge to learn about DNA fingerprinting and recognizing DNA alterations that may result in genetic disorders.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Megan Schroeder
Date Added:
09/18/2014
DNA Forensics and Color Pigments
Read the Fine Print
Educational Use
Rating
0.0 stars

Students perform DNA forensics using food coloring to enhance their understanding of DNA fingerprinting, restriction enzymes, genotyping and DNA gel electrophoresis. They place small drops of different food coloring ("water-based paint") on strips of filter paper and then place one paper strip end in water. As water travels along the paper strips, students observe the pigments that compose the paint decompose into their color components. This is an example of the chromatography concept applied to DNA forensics, with the pigments in the paint that define the color being analogous to DNA fragments of different lengths.

Subject:
Applied Science
Engineering
Genetics
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
DNA: The Human Body Recipe
Read the Fine Print
Educational Use
Rating
0.0 stars

As a class, students work through an example showing how DNA provides the "recipe" for making our body proteins. They see how the pattern of nucleotide bases (adenine, thymine, guanine, cytosine) forms the double helix ladder shape of DNA, and serves as the code for the steps required to make genes. They also learn some ways that engineers and scientists are applying their understanding of DNA in our world.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Lesson Plan
Teaching/Learning Strategy
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Frank Burkholder
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design of Medical Devices and Implants, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.

Subject:
Applied Science
Genetics
Health, Medicine and Nursing
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Spector, Myron
Yannas, Ioannis
Date Added:
01/01/2006
Discovering Genes Associated with Diseases and Traits in Dogs
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video module, students learn how scientists use genetic information from dogs to find out which gene (out of all 20,000 dog genes) is associated with any specific trait or disease of interest. This method involves comparing hundreds of dogs with the trait to hundreds of dogs not displaying the trait, and examining which position on the dog DNA is correlated with the trait (i.e. has one DNA sequence in dogs with the trait but another DNA sequence in dogs not displaying the trait). Students will also learn something about the history of dog breeds and how this history helps us find genes.

Subject:
Biology
Genetics
Life Science
Zoology
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Elinor Karlsson
Date Added:
07/02/2021
Don't Be a Square
Read the Fine Print
Educational Use
Rating
0.0 stars

After watching video clips from the Harry Potter and the Goblet of Fire movie, students explore the use of Punnett squares to predict genetic trait inheritance. The objective of this lesson is to articulate concepts related to genetics through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Elements of Mechanical Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliverables of their project. Student assessment is based upon mastery of the course materials and the student's ability to synthesize, model and fabricate a mechanical device subject to engineering constraints (e.g. cost and time/schedule).

Subject:
Applied Science
Career and Technical Education
Chemistry
Engineering
Genetics
Life Science
Manufacturing
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Culpepper, Martin
Date Added:
01/01/2009
Engineering Nature: DNA Visualization and Manipulation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to genetic techniques such as DNA electrophoresis and imaging technologies used for molecular and DNA structure visualization. In the field of molecular biology and genetics, biomedical engineering plays an increasing role in the development of new medical treatments and discoveries. Engineering applications of nanotechnology such as lab-on-a-chip and deoxyribonucleic acid (DNA) microarrays are used to study the human genome and decode the complex interactions involved in genetic processes.

Subject:
Applied Science
Engineering
Genetics
Life Science
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014