Updating search results...

Search Resources

733 Results

View
Selected filters:
  • Physics
8.3 Forces at a Distance - Unit Overview
Unrestricted Use
CC BY
Rating
0.0 stars

This unit launches with a slow-motion video of a speaker as it plays music. In the previous unit, students developed a model of sound. This unit allows students to investigate the cause of a speaker’s vibration in addition to the effect.

Students dissect speakers to explore the inner workings, and engineer homemade cup speakers to manipulate the parts of the speaker. They identify that most speakers have the same parts–a magnet, a coil of wire, and a membrane. Students investigate each of these parts to figure out how they work together in the speaker system. Along the way, students manipulate the components (e.g. changing the strength of the magnet, number of coils, direction of current) to see how this technology can be modified and applied to a variety of contexts, like MagLev trains, junkyard magnets, and electric motors.

Subject:
Physical Science
Physics
Material Type:
Unit of Study
Provider:
OpenSciEd
Date Added:
07/02/2021
Above-Ground Storage Tank Design Project
Read the Fine Print
Educational Use
Rating
0.0 stars

At this point in the unit, students have learned about Pascal's law, Archimedes' principle, Bernoulli's principle, and why above-ground storage tanks are of major concern in the Houston Ship Channel and other coastal areas. In this culminating activity, student groups act as engineering design teams to derive equations to determine the stability of specific above-ground storage tank scenarios with given tank specifications and liquid contents. With their floatation analyses completed and the stability determined, students analyze the tank stability in specific storm conditions. Then, teams are challenged to come up with improved storage tank designs to make them less vulnerable to uplift, displacement and buckling in storm conditions. Teams present their analyses and design ideas in short class presentations.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Accelerometer: Centripetal Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work as physicists to understand centripetal acceleration concepts. They also learn about a good robot design and the accelerometer sensor. They also learn about the relationship between centripetal acceleration and centripetal force governed by the radius between the motor and accelerometer and the amount of mass at the end of the robot's arm. Students graph and analyze data collected from an accelerometer, and learn to design robots with proper weight distribution across the robot for their robotic arms. Upon using a data logging program, they view their own data collected during the activity. By activity end , students understand how a change in radius or mass can affect the data obtained from the accelerometer through the plots generated from the data logging program. More specifically, students learn about the accuracy and precision of the accelerometer measurements from numerous trials.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carlo Yuvienco
Jennifer S. Haghpanah
Date Added:
09/18/2014
Acoustic Mirrors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students play and record the “Mary Had a Little Lamb” song using musical instruments and analyze the intensity of the sound using free audio editing and recording software. Then they use hollow Styrofoam half-spheres as acoustic mirrors (devices that reflect and focus sound), determine the radius of curvature of the mirror and calculate its focal length. Students place a microphone at the acoustic mirror focal point, re-record their songs, and compare the sound intensity on plot spectrums generated from their recordings both with and without the acoustic mirrors. A worksheet and KWL chart are provided.

Subject:
Geometry
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Nick Breen
Steven C. Thedford
Date Added:
07/07/2021
Action-Reaction! Rocket
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct rockets from balloons propelled along a guide string. They use this model to learn about Newton's three laws of motion, examining the effect of different forces on the motion of the rocket.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise W. Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Advanced Device Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will focus for a large part on MOSFET and CMOS, but also on heterojunction BJT, and photonic devices.First non-ideal characteristics of MOSFETs will be discussed, like channel-length modulation and short-channel effects. We will also pay attention to threshold voltage modification by varying the dopant concentration. Further, MOS scaling will be discussed. A combination of an n-channel and p-channel MOSFET is used for CMOS devices that form the basis for current digital technology. The operation of a CMOS inverter will be explained. We will explain in more detail how the transfer characteristics relate to the CMOS design.

Subject:
Career and Technical Education
Electronic Technology
Physical Science
Physics
Material Type:
Activity/Lab
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
R.A.C.M.M. van Swaaij
Date Added:
02/20/2016
Advanced Solid State Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is about the electronic properties of materials and contains lectures about scattering, transport in metals, phonons and superconductivity.

Subject:
Physical Science
Physics
Material Type:
Assessment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Y.M. Blanter
Date Added:
02/03/2016
The Advantage of Machines
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn about work as defined by physical science and see that work is made easier through the use of simple machines. Already encountering simple machines everyday, students will be alerted to their widespread uses in everyday life. This lesson serves as the starting point for the Simple Machines Unit.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Michael Bendewald
Date Added:
09/18/2014
The Adventure of Physics - Vol. III: Light, Charges, and Brains
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and empty space move leads to many adven- tures. This volume presents the best of them in the domains of relativity and cosmology. In the study of motion – physics – special and general relativity form two important building blocks.

Special relativity is the exploration of the energy speed limit c. General relativity is the exploration of the force limit c4/4G. The text shows that in both domains, all equations follow from these two limit values. This simple, intuitive and unusual way of learning relativity should reward the curiosity of every reader – whether student or professional.

The present volume is the second of a six-volume overview of physics that arose from a threefold aim that I have pursued since 1990: to present motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
07/07/2021
The Adventure of Physics - Vol. II: Relativity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and empty space move leads to many adventures. This volume presents the best of them in the domains of relativity and cosmology. In the study of motion – physics – special and general relativity form two important building blocks.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
07/07/2021
The Adventure of Physics - Vol. IV: The Quantum of Change
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is curious about nature and motion. Have you ever asked: Why do people, animals, things, images and space move? The answer leads to many adventures; this volume presents those due to the discovery that there is a smallest change value in nature. This smallest change value, the quantum of action, leads to what is called quantum physics. In the structure of modern physics, quantum physics covers three points; this volume covers the introduction to the point in the lower right: the foundations of quantum theory.

The present introduction to quantum physics arose from a threefold aim I have pur- sued since 1990: to present the basics of motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
07/07/2021
The Adventure of Physics - Vol. VI: The Strand Model - A Speculation on Unification
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is intensely curious about nature and motion. Have you ever asked: Why do people, animals, things, images and empty space move? The answer leads to many adventures, and this book presents one of the best of them: the search for a precise, unified and final description of all motion.

The wish to describe all motion is a large endeavour. Fortunately, this large endeavour can be structured in the simple diagram shown in Figure 1. The final and unified description of motion, the topic of this book, corresponds to the highest point in the diagram. Searching for this final and unified description is an old quest. In the following, I briefly summarize its history and then present an intriguing, though speculative solution to the riddle.

The search for the final, unified description of motion is a story of many surprises. For example, twentieth-century research has shown that there is a smallest distance in nature. Research has also shown that matter cannot be distinguished from empty space at those small distances. A last surprise dates from this century: particles and space are best described as made of strands, instead of little spheres or points. The present text explains how to reach these unexpected conclusions. In particular, quantum field theory, the standard model of particle physics, general relativity and cosmology are shown to follow from strands. The three gauge interactions, the three particle generations and the three dimensions of space turn out to be due to strands. In fact, all the open questions of twentieth-century physics about the foundations of motion, all the millennium issues, can be solved with the help of strands.

The strand model, as presented in this text, is an unexpected result from a threefold aim that I have pursued since 1990, in the five previous volumes of this series: to present the basics of motion in a way that is up to date, captivating and simple. In retrospect, the aim for maximum simplicity has been central in deducing this speculation. While the previous volumes introduced, in an entertaining way, the established parts of physics, this volume presents, in the same entertaining and playful way, a speculation about unification. Nothing in this volume is established knowledge – yet. The text is the original presentation of the topic.

The search for a final theory is one of the great adventures of life: it leads to the limits of thought. The search overthrows our thinking habits about nature. A change in thinking habits can produce fear, often hidden by anger. But by overcoming our fears we gain strength and serenity. Changing thinking habits thus requires courage, but it also produces intense and beautiful emotions. Enjoy them!

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
07/07/2021
The Adventure of Physics - Vol. V: Motion Inside Matter - Pleasure, Technology, and Stars
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is curious about nature and motion. Curiosity about how bodies, images and empty space move leads to many adventures. This volume presents the best adventures about the motion inside people, inside animals, and inside any other type of matter – from the largest stars to the smallest nuclei.

Motion inside bodies – dead or alive – is described by quantum theory. Quantum theory describes all motion with the quantum of action h, the smallest change observed in nature. Building on this basic idea, the text first shows how to describe life, death and pleasure. Then, the text explains the observations of chemistry, materials science, astrophysics and particle physics. In the structure of physics, these topics correspond to the three ‘quantum’ points in Figure 1. The story of motion inside living and non-living matter, from the coldest gases to the hottest stars, is told here in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one sur- prise that makes the reader think. Also numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
07/07/2021
Aerodynamics of Viscous Fluids, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Boundary layers as rational approximations to the solutions of exact equations of fluid motion. Physical parameters influencing laminar and turbulent aerodynamic flows and transition. Effects of compressibility, heat conduction, and frame rotation. Influence of boundary layers on outer potential flow and associated stall and drag mechanisms. Numerical solution techniques and exercises. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Merchant, Ali A.
Date Added:
01/01/2003
Aeronautics and Astronautics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

These courses, produced by the Massachusetts Institute of Technology, introduce the fundamental concepts and approaches of aerospace engineering, highlighted through lectures on aeronautics, astronautics, and design. MIT˘ď‹ď_s Aerospace and Aeronautics curriculum is divided into three parts: Aerospace information engineering, Aerospace systems engineering, and Aerospace vehicles engineering. Visitors to this site will find undergraduate and graduate courses to fit all three of these areas, from Exploring Sea, Space, & Earth: Fundamentals of Engineering Design to Bio-Inspired Structures

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
03/17/2011
Air Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Air pressure is pushing on us all the time although we do not usually notice it. In this activity, students learn about the units of pressure and get a sense of just how much air pressure is pushing on them.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
Ampere's Law
Read the Fine Print
Educational Use
Rating
0.0 stars

The lesson begins with a demonstration introducing students to the force between two current carrying loops, comparing the attraction and repulsion between the loops to that between two magnets. After formal lecture on Ampere's law, students begin to use the concepts to calculate the magnetic field around a loop. This is applied to determine the magnetic field of a toroid, imagining a toroid as a looped solenoid.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Amusement Park Ride: Ups and Downs in Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design, build and test model roller coasters using foam tubing. The design process integrates energy concepts as they test and evaluate designs that address the task as an engineer would. The goal is for students to understand the basics of engineering design associated with kinetic and potential energy to build an optimal roller coaster. The marble starts with potential energy that is converted to kinetic energy as it moves along the track. The diameter of the loops that the marble traverses without falling out depends on the kinetic energy obtained by the marble.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
C. Shade
Marthy Cyr
Date Added:
09/18/2014
Android Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students prepare for the associated activity in which they investigate acceleration by collecting acceleration vs. time data using the accelerometer of a sliding Android device. Based on the experimental set-up for the activity, students form hypotheses about the acceleration of the device. Students will investigate how the force on the device changes according to Newton's Second Law. Different types of acceleration, including average, instantaneous and constant acceleration, are introduced. Acceleration and force is described mathematically and in terms of processes and applications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Android Pendulums
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the motion of a simple pendulum through direct observation and data collection using Android® devices. First, student groups create pendulums that hang from the classroom ceiling, using Android smartphones or tablets as the bobs, taking advantage of their built-in accelerometers. With the Android devices loaded with the (provided) AccelDataCapture app, groups explore the periodic motion of the pendulums, changing variables (amplitude, mass, length) to see what happens, by visual observation and via the app-generated graphs. Then teams conduct formal experiments to alter one variable while keeping all other parameters constant, performing numerous trials, identifying independent/dependent variables, collecting data and using the simple pendulum equation. Through these experiments, students investigate how pendulums move and the changing forces they experience, better understanding the relationship between a pendulum's motion and its amplitude, length and mass. They analyze the data, either on paper or by importing into a spreadsheet application. As an extension, students may also develop their own algorithms in a provided App Inventor framework in order to automatically note the time of each period.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Doug Bertelsen
Date Added:
09/18/2014