Updating search results...

Search Resources

10000 Results

View
Selected filters:
Quantitative Problem Solving in Natural Resources
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This textbook is intended to support courses that bridge the divide between mathematics typically encountered in U.S. high school curricula and the practical problems that natural resource students might engage with in their disciplinary coursework and professional internships.

Subject:
Applied Science
Environmental Science
Mathematics
Material Type:
Textbook
Provider:
Iowa State University
Author:
Peter L. Moore
Date Added:
10/05/2018
Quantitative Reasoning & Statistical Methods for Planners I, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course develops logical, empirically based arguments using statistical techniques and analytic methods. Elementary statistics, probability, and other types of quantitative reasoning useful for description, estimation, comparison, and explanation are covered. Emphasis is on the use and limitations of analytical techniques in planning practice.

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Glenn, Ezra Haber
Date Added:
01/01/2009
Quantitative Research Methods for Political Science, Public Policy and Public Administration (With Applications in R)
Unrestricted Use
CC BY
Rating
0.0 stars

The focus of this book is on using quantitative research methods to test hypotheses and build theory in political science, public policy and public administration. It is designed for advanced undergraduate courses, or introductory and intermediate graduate-level courses. The first part of the book introduces the scientific method, then covers research design, measurement, descriptive statistics, probability, inference, and basic measures of association. The second part of the book covers bivariate and multiple linear regression using the ordinary least squares, the calculus and matrix algebra that are necessary for understanding bivariate and multiple linear regression, the assumptions that underlie these methods, and then provides a short introduction to generalized linear models.

The book fully embraces the open access and open source philosophies. The book is freely available in the SHAREOK repository; it is written in R Markdown files that are available in a public GitHub repository; it uses and teaches R and RStudio for data analysis, visualization and data management; and it uses publically available survey data (from the Meso-Scale Integrated Socio-geographic Network) to illustrate important concepts and methods. We encourage students to download the data, replicate the examples, and explore further! We also encourage instructors to download the R Markdown files and modify the text for use in different courses.

Subject:
Economics
Political Science
Social Science
Material Type:
Textbook
Provider:
SHAREOK
Author:
Copeland Gary
Fister Aaron L
Hughes Tyler
Jenkins-smith Hank C
Nowlin Matthew C
Ripberger Joseph T
Wehde Wesley
Date Added:
08/18/2017
Quantitative Research Methods for Political Science, Public Policy and Public Administration for Undergraduates: 1st Edition With Applications in Excel
Unrestricted Use
CC BY
Rating
0.0 stars

Quantitative Research Methods for Political Science, Public Policy and Public Administration for Undergraduates: 1st Edition With Applications in Excel is an adaption of Quantitative Research Methods for Political Science, Public Policy and Public Administration (With Applications in R). The focus of this book is on using quantitative research methods to test hypotheses and build theory in political science, public policy and public administration. This new version is designed specifically for undergraduate courses. It omits large portions of the original text that focused on calculus and linear algebra, expands and reorganizes the content on the software system by shifting to Excel and includes guided study questions at the end of each chapter.

Subject:
Political Science
Social Science
Material Type:
Textbook
Provider:
East Tennessee State University
Author:
Aaron Fister
Gary Copeland
Hank Jenkins-Smith
Joseph Ripberger
Josie Davis
Matthew Nowlin
Tracey Bark
Tyler Hughes
Wehde Wesley
Date Added:
07/07/2021
Quantitative Research Methods for Political Science, Public Policy and Public Administration for Undergraduates: 1st Edition With Applications in R
Unrestricted Use
CC BY
Rating
0.0 stars

Quantitative Research Methods for Political Science, Public Policy and Public Administration for Undergraduates: 1st Edition With Applications in R is an adaption of Quantitative Research Methods for Political Science, Public Policy and Public Administration (With Applications in R). The focus of this book is on using quantitative research methods to test hypotheses and build theory in political science, public policy and public administration. This new version of the text omits large portions of the original text that focused on calculus and linear algebra, expands and reorganizes the content on the software system R and includes guided study questions at the end of each chapter.

Subject:
Political Science
Social Science
Material Type:
Textbook
Provider:
East Tennessee State University
Author:
Aaron Fister
Gary Copeland
Hank Jenkins-Smith
Joseph Ripberger
Josie Davis
Matthew Nowlin
Tyler Hughes
Wehde Wesley
Date Added:
07/07/2021
Quantum Bound States
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the properties of quantum "particles" bound in potential wells. See how the wave functions and probability densities that describe them evolve (or don't evolve) over time.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Sam McKagan
Date Added:
10/02/2006
Quantum Complexity Theory, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to quantum computational complexity theory, the study of the fundamental capabilities and limitations of quantum computers. Topics include complexity classes, lower bounds, communication complexity, proofs, advice, and interactive proof systems in the quantum world. The objective is to bring students to the research frontier.

Subject:
Applied Science
Information Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Aaronson, Scott
Date Added:
01/01/2010
Quantum Cryptography
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How can you tell a secret when everyone is able to listen in? In this course, you will learn how to use quantum effects, such as quantum entanglement and uncertainty, to implement cryptographic tasks with levels of security that are impossible to achieve classically.

This interdisciplinary course is an introduction to the exciting field of quantum cryptography, developed in collaboration between QuTech at Delft University of Technology and the California Institute of Technology.

By the end of the course you will

Be armed with a fundamental toolbox for understanding, designing and analyzing quantum protocols.
Understand quantum key distribution protocols.
Understand how untrusted quantum devices can be tested.
Be familiar with modern quantum cryptography – beyond quantum key distribution.
This course assumes a solid knowledge of linear algebra and probability at the level of an advanced undergraduate. Basic knowledge of elementary quantum information (qubits and simple measurements) is also assumed, but if you are completely new to quantum information additional videos are provided for you to fill in any gaps.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Stephanie Wehner
Thomas Vidick
Date Added:
07/14/2021
Quantum Dots and Colors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the physical concept of the colors of rainbows as light energy in the form of waves with distinct wavelengths, but in a different manner than traditional kaleidoscopes. Looking at different quantum dot solutions, they make observations and measurements, and graph their data. They come to understand how nanoparticles interact with absorbing photons to produce colors. They learn the dependence of particle size and color wavelength and learn about real-world applications for using these colorful liquids.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Date Added:
09/18/2014
Quantum Dots and the Harkess Method
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the applications of quantum dots by researching a journal article and answering framing questions used in a classwide discussion. This "Harkness-method" discussion helps students become critical readers of scientific literature.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Date Added:
09/18/2014
Quantum Information Processing
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Quantum Information Processing aims at harnessing quantum physics to conceive and build devices that could dramatically exceed the capabilities of today's "classical" computation and communication systems. In this course, we will introduce the basic concepts of this rapidly developing field.

Subject:
Physical Science
Physics
Material Type:
Assessment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
L.M.K. Verdersypen
Date Added:
02/02/2016
Quantum Information Science, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course examines quantum computation and quantum information. Topics include quantum circuits, quantum Fourier transform and search algorithms, physical implementations, the quantum operations formalism, quantum error correction, stabilizer and Calderbank-Shor-Steans codes, fault tolerant quantum computation, quantum data compression, entanglement, and proof of the security of quantum cryptography. Prior knowledge of quantum mechanics and basic information theory is required.

Subject:
Applied Science
Information Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Shor, Peter
Date Added:
01/01/2006
The Quantum Internet and Quantum Computers: How Will They Change the World?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

There is no doubt that quantum computers and the quantum internet will have a great impact on our world. But we don’t yet know quite how. As with traditional computers – we will only see the effects in the decades to come.

This course will provide you with a basic understanding of quantum computing and the quantum internet. Together, we’ll peek into the fascinating world of quantum phenomena, such as qubits, superposition, and entanglement.

We’ll envision the potential impact of quantum computing and the quantum internet.

You’ll explore various application areas, such as quantum chemistry, quantum machine learning, encryption and secure communication, factorization, and blind quantum computation.

The course is aimed at a broad and diverse audience including policy-makers, people with a scientific or personal interest, business executives, and students at all levels.

We invite you on a journey beyond what is known to us now, and to envision a world with quantum technologies.

This journey will continue in a second course planned for May 2018, where we will expand from an understanding of the building blocks of Quantum Computers to look at further applications and possibilities.

This course is authored by experts from the QuTech research center at Delft University of Technology. In the center scientists and engineers work together to enhance research and development in quantum technology. QuTech Academy’s aim is to inspire, share and disseminate knowledge about the latest developments in quantum technology.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr. Lieven Vandersypen
Stephanie Wehner
dr.ir. Menno Veldhorst
Date Added:
07/14/2021
Quantum Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The revered quantum physicist Richard Feynman once quipped, ̢ĺŰĺĎI think I can safely say that nobody understands quantum mechanics.̢ĺŰĺ And yet, the study of quantum mechanics has given birth to the laser, the microchip, and the electron microscope. What̢ĺŰĺŞs going on here? You can find out by taking Quantum Physics I, a completely free online class from MIT. The Syllabus is a great way to get situated with the course offerings and the Readings section offers links to help purchase the necessary books. When ready, strap yourself into your office chair and launch into the 24 one-hour-long Lecture Videos. Don̢ĺŰĺŞt forget the Lecture Notes (you̢ĺŰĺŞll need those!), as well as Assignments, Exams, and Study Materials. If you have ever longed to understand the Higgs Boson or wondered how a photon can act as either a particle or a wave, this incredible, knowledge packed course from one of the top scientific universities in the world is for you.

Subject:
Education
Physical Science
Physics
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Adams, Allan
Evans, Matthew
Zwiebach, Barton
Date Added:
11/07/2013
Quantum Physics II, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Together, this course and 8.06 Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Barton Zwiebach
Date Added:
01/01/2013
Quantum Physics III, Spring 2016
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

8.06 is the third course in the three-sequence physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems using both exact analytic techniques and various approximation methods. This course will introduce some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of Hydrogen, lasers, and particle scattering.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Aram Harrow
Date Added:
01/01/2016
Quantum Physics III, Spring 2018
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a continuation of 8.05 Quantum Physics II. It introduces some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of hydrogen, lasers, and particle scattering.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Barton Zwiebach
Date Added:
01/01/2018
Quantum Theory II, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A two-semester subject on quantum theory, stressing principles: uncertainty relation, observables, eigenstates, eigenvalues, probabilities of the results of measurement, transformation theory, equations of motion, and constants of motion. Symmetry in quantum mechanics, representations of symmetry groups. Variational and perturbation approximations. Systems of identical particles and applications. Time-dependent perturbation theory. Scattering theory: phase shifts, Born approximation. The quantum theory of radiation. Second quantization and many-body theory. Relativistic quantum mechanics of one electron. This is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.

Subject:
Mathematics
Physical Science
Physics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Taylor, Washington
Date Added:
01/01/2003
Quantum Theory of Radiation Interactions, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject introduces the key concepts and formalism of quantum mechanics and their relevance to topics in current research and to practical applications. Starting from the foundation of quantum mechanics and its applications in simple discrete systems, it develops the basic principles of interaction of electromagnetic radiation with matter. Topics covered are composite systems and entanglement, open system dynamics and decoherence, quantum theory of radiation, time-dependent perturbation theory, scattering and cross sections. Examples are drawn from active research topics and applications, such as quantum information processing, coherent control of radiation-matter interactions, neutron interferometry and magnetic resonance.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Paola Cappellaro
Date Added:
01/01/2012
Quantum Tunneling and Wave Packets
Unrestricted Use
CC BY
Rating
0.0 stars

Watch quantum "particles" tunnel through barriers. Explore the properties of the wave functions that describe these particles.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Sam McKagan
Date Added:
08/28/2006