Students will predict bond polarity using electron negativity values; indicate polarity with …
Students will predict bond polarity using electron negativity values; indicate polarity with a polar arrow or partial charges; rank bonds in order of polarity; and predict molecular polarity using bond polarity and molecular shape.
Do you ever wonder how a greenhouse gas affects the climate, or …
Do you ever wonder how a greenhouse gas affects the climate, or why the ozone layer is important? Use the sim to explore how light interacts with molecules in our atmosphere.
Students learn about frequency and period, particularly natural frequency using springs. They …
Students learn about frequency and period, particularly natural frequency using springs. They learn that the natural frequency of a system depends on two things: the stiffness and mass of the system. Students see how the natural frequency of a structure plays a big role in the building surviving an earthquake or high winds.
Stimulate a neuron and monitor what happens. Pause, rewind, and move forward …
Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they move across the neuron membrane.
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control …
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor! (Previously part of the Nuclear Physics simulation - now there are separate Alpha Decay and Nuclear Fission sims.)
Did you ever imagine that you can use light to move a …
Did you ever imagine that you can use light to move a microscopic plastic bead? Explore the forces on the bead or slow time to see the interaction with the laser's electric field. Use the optical tweezers to manipulate a single strand of DNA and explore the physics of tiny molecular motors. Can you get the DNA completely straight or stop the molecular motor?
Students are presented with a short lesson on the Coulter principle—an electronic …
Students are presented with a short lesson on the Coulter principle—an electronic method to detect microscopic particles and determine their concentration in fluid. Depending on the focus of study, students can investigate the industrial and medical applications of particle detection, the physics of fluid flow and electric current through the apparatus, or the chemistry of the electrolytes used in the apparatus.
Students apply concepts of disease transmission to analyze infection data, either provided …
Students apply concepts of disease transmission to analyze infection data, either provided or created using Bluetooth-enabled Android devices. This data collection may include several cases, such as small static groups (representing historically rural areas), several roaming students (representing world-travelers), or one large, tightly knit group (representing urban populations). To explore the algorithms to a deeper degree, students may also design their own diseases using the App Inventor framework.
Students explore their peripheral vision by reading large letters on index cards. …
Students explore their peripheral vision by reading large letters on index cards. Then they repeat the experiment while looking through camera lenses, first a lens with a smaller focal length and then a lens with a larger focal length. Then they complete a worksheet and explain how the experiment helps them solve the challenge question introduced in lesson 1 of this unit.
Through this lesson and its associated activity, students explore the role of …
Through this lesson and its associated activity, students explore the role of biomedical engineers working for pharmaceutical companies. First, students gain background knowledge about what biomedical engineers do, how to become a biomedical engineer, and the steps of the engineering design process. The goal is to introduce biomedical engineering as medical problem solving as well as highlight the importance of maintaining normal body chemistry. Students participate in the research phase of the design process as it relates to improving the design of a new prescription medication. During the research phase, engineers learn about topics by reading scholarly articles written by others, and students experience this process. Students draw on their research findings to participate in discussion and draw conclusions about the impact of medications on the human body.
In a class demonstration, the teacher places different pill types ("chalk" pill, …
In a class demonstration, the teacher places different pill types ("chalk" pill, gel pill, and gel tablet) into separate glass beakers of vinegar, representing human stomach acid. After 20-30 minutes, the pills dissolve. Students observe which dissolve the fastest, and discuss the remnants of the various pills. What they learn contributes to their ongoing objective to answer the challenge question presented in lesson 1 of this unit.
The students will play a classic game from a popular show. Through …
The students will play a classic game from a popular show. Through this they will see the probabilty that the ball will land each of the numbers with more accurate results coming from repeated testing.
This textbook is designed specifically for Kansas State's Biology 198 Class. The …
This textbook is designed specifically for Kansas State's Biology 198 Class. The course is taught using the studio approach and based on active learning. The studio manual contains all of the learning objectives for each class period and is the record of all student activities. Hence, this textbook is more of a reference tool while the studio manual is the learning tool.
Building on their understanding of graphs, students are introduced to random processes …
Building on their understanding of graphs, students are introduced to random processes on networks. They walk through an illustrative example to see how a random process can be used to represent the spread of an infectious disease, such as the flu, on a social network of students. This demonstrates how scientists and engineers use mathematics to model and simulate random processes on complex networks. Topics covered include random processes and modeling disease spread, specifically the SIR (susceptible, infectious, resistant) model.
Students explore the applications of quantum dots by researching a journal article …
Students explore the applications of quantum dots by researching a journal article and answering framing questions used in a classwide discussion. This "Harkness-method" discussion helps students become critical readers of scientific literature.
Learn about different types of radiometric dating, such as carbon dating. Understand …
Learn about different types of radiometric dating, such as carbon dating. Understand how decay and half life work to enable radiometric dating to work. Play a game that tests your ability to match the percentage of the dating element that remains to the age of the object.
Explore what makes a reaction happen by colliding atoms and molecules. Design …
Explore what makes a reaction happen by colliding atoms and molecules. Design experiments with different reactions, concentrations, and temperatures. When are reactions reversible? What affects the rate of a reaction?
The discovery of restriction enzymes and their applications in DNA analysis has …
The discovery of restriction enzymes and their applications in DNA analysis has proven to be essential for biologists and chemists. This lesson focuses on restriction enzymes and their applications to DNA analysis and DNA fingerprinting. Use this lesson and its associated activity in conjunction with biology lessons on DNA analysis and DNA replication.
Students learn about rotary encoders and discover how they operate through hands-on …
Students learn about rotary encoders and discover how they operate through hands-on experimentation. Rotary encoders are applied in tools to determine angle measurements and for translations of angular motion. One common rotary encoder application is in a computer's ball-type mouse—the ball itself is a type of rotary encoder. In this activity, students experiment with two rotary encoders, including one from a computer mouse and one created using a LEGO® MINDSTORMS® NXT kit. They collect data to define and graph the relationship between the motion of the rotary encoder and its output.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.