Updating search results...

Search Resources

201 Results

View
Selected filters:
  • Chemistry
Crystal Structure Analysis, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry of diffraction, structure factors, phase problem, direct methods, Patterson methods, electron density maps, structure refinement, how to grow good crystals, powder methods, limits of X-ray diffraction methods, and structure data bases.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mueller, Peter
Date Added:
01/01/2010
Crystal Structure Refinement, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mueller, Peter
Date Added:
01/01/2009
Density Column Lab - Part 2
Read the Fine Print
Educational Use
Rating
0.0 stars

Concluding a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate densities of several household liquids and compare them to the densities of irregularly shaped objects (as determined in Part 1). Then they create density columns with the three liquids and four solid items to test their calculations and predictions of the different densities. Once their density columns are complete, students determine the effect of adding detergent to the columns. After this activity, present the associated Density & Miscibility lesson for a discussion about why the column layers do not mix.

Subject:
Applied Science
Chemistry
Engineering
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Barry Williams
Jessica Ray
Phyllis Balcerzak
Date Added:
09/18/2014
Density & Miscibility
Read the Fine Print
Educational Use
Rating
0.0 stars

After students conduct the two associated activities, Density Column Lab - Parts 1 and 2, present this lesson to provide them with an understanding of why the density column's oil, water and syrup layers do not mix and how the concepts of density and miscibility relate to water chemistry and remediation. Topics covered include miscibility, immiscibility, hydrogen bonds, hydrophobic and hydrophilic. Through the density column lab activities, students see liquids and solids of different densities interact without an understanding of why the resulting layers do not mix. This lesson gives students insight on some of the most fundamental chemical properties of water and how it interacts with different molecules.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Barry Williams
Jessica Ray
Phyllis Balcerzak
Date Added:
09/18/2014
Designing a Color-Changing Paint Using pH
Read the Fine Print
Educational Use
Rating
0.0 stars

How can an understanding of pH—a logarithmic scale used to identify the acidity or basicity of a water-based solution—be used to design and create a color-changing paint? This activity provides students the opportunity to extract dyes from natural products and test dyes for acids or bases as teams develop a prototype “paint” that is eventually applied to help with a wall redesign at a local children’s hospital. Students learn about how dyes are extracted from organic material and use the engineering design process to test dyes using a variety of indicators to achieve the right color for their prototype. Students iterate on their dyes and use ratios and proportions to calculate the amount of dye needed to successfully complete their painting project.

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Numbers and Operations
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Benjamin McCombs
Carly Monfort
Joseph Duncan
Linda Gillum
Miyong Hughes
Date Added:
01/30/2019
Digital Lab Techniques Manual, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The "Digital Lab Techniques Manual" is a series of videos designed to help you prepare for your chemistry laboratory class. Each video provides a detailed demonstration of a common laboratory technique, as well as helpful tips and information. These videos are meant to supplement, and not replace, your lab manual and assigned reading. In fact, you will most benefit from watching the videos if you have already read the appropriate background information. To be a great experimentalist, you must understand both theory and technique! If you have questions about what you see, make sure to ask your TA or your instructor. WARNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the material presented.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Berkowski, Kimberly
Huang, Eileen
Siddiqui, Aayesha
Tabacco, Sarah
Date Added:
01/01/2007
Diseases Exposed: ESR Test in the Classroom
Read the Fine Print
Educational Use
Rating
0.0 stars

Students demonstrate the erythrocyte sedimentation rate test (ESR test) using a blood model composed of tomato juice, petroleum jelly and olive oil. They simulate different disease conditions, including rheumatoid arthritis, anemia, leukocytosis and sickle-cell anemia, by making appropriate variations in the particle as well as in the fluid matrix. Students measure the ESR for each sample blood model, correlate the ESR values with disease conditions and confirm that diseases alter blood composition and properties. During the activity, students learn that when non-coagulated blood is let to stand in a tube, the red blood cells separate and fall to the bottom of the tube, resulting in a sediment and a clear liquid called serum. The height in millimeters of the clear liquid on top of the sediment in a time period of one hour is taken as the sedimentation rate. If a disease is present, this ESR value deviates from the normal, disease-free value. Different diseases cause different ESR values because blood composition and properties, such as density and viscosity, are altered differently by different diseases. Thus, the ESR test serves as a real-world diagnostic screening test to identify indications of the presence of any diseases in people.

Subject:
Career and Technical Education
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Renuka Rajasekaran
Date Added:
07/07/2021
Dyeing to Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experiment with various ways to naturally dye materials using sources found in nature—roots, leaves, seeds, spices, etc.—as well as the method of extracting dyes. Then they analyze various materials using statistical methods and tackle an engineering design challenge—to find dyes that best suit the needs of a startup sustainable clothing company.

Subject:
Chemistry
Mathematics
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Amanda Grear
Brett Doudican
Carly Monfort
Craig George
Date Added:
10/18/2018
Earthquake 8.2
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

An engineering and design lesson for middle school (our 7th grade standards).

In the aftermath of a natural disaster, can you engineer a device that will keep medicine within a 40-60°F range using natural resources from the biome you live in, and/or debris created by the disaster for three days, until the Red Cross can arrive?

You are a team of relief workers in __________________after a major earthquake/tsunami has occurred. Your team lead as just told you about a young women with diabetes has been injured and needs insulin to be delivered __________ miles away (no open roads). Your team will need to research, design, and build a portable device to keep the insulin between _____ and ______ °(F/C) for _____ days. Once you return you will present the effectiveness of your device to your lead and a team other relief workers showing your both your design/device and explaining the process.

Subject:
Applied Science
Chemistry
Engineering
Geology
Life Science
Physical Geography
Physical Science
Material Type:
Activity/Lab
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Author:
Bobbi Dano
Jen Bultler
Date Added:
07/07/2021
Eat Iron?!!
Read the Fine Print
Educational Use
Rating
0.0 stars

To gain an understanding of mixtures and the concept of separation of mixtures, students use strong magnets to find the element of iron in iron-fortified breakfast cereal flakes. Through this activity, they see how the iron component of this heterogeneous mixture (cereal) retains its properties and can thus be separated by physical means.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Parnia Mohammadi
Roberto Dimaliwat
Date Added:
09/18/2014
Edible Algae Models
Read the Fine Print
Educational Use
Rating
0.0 stars

Students make edible models of algal cells as a way to tangibly understand the parts of algae that are used to make biofuels. The molecular gastronomy techniques used in this activity blend chemistry, biology and food for a memorable student experience. The models use sodium alginate, which forms a gel matrix when in contact with calcium or moderate acid, to represent the complex-carbohydrate-composed cell walls of algae. Cell walls protect the algal cell contents and can be used to make biofuels, although they are more difficult to use than the starch and oils that accumulate in algal cells. The liquid juice interior of the algal models represents the starch and oils of algae, which are easily converted into biofuels.

Subject:
Applied Science
Biology
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Lauren Jabusch
Date Added:
05/16/2017
Electricity and Magnetism, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
John Belcher
Date Added:
05/17/2004
Electrochemical Energy Systems, Spring 2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces principles and mathematical models of electrochemical energy conversion and storage. Students study equivalent circuits, thermodynamics, reaction kinetics, transport phenomena, electrostatics, porous media, and phase transformations. In addition, this course includes applications to batteries, fuel cells, supercapacitors, and electrokinetics.

Subject:
Applied Science
Career and Technical Education
Chemistry
Electronic Technology
Engineering
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bazant, Martin
Date Added:
01/01/2011
Electrochemistry: Electroplating
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The aim of this lesson is to introduce the concepts of Electrochemistry and Electroplating and to present their applications in our daily lives. Students are encouraged to construct their knowledge of Electroplating through brainstorming sessions, experiments and discussions. This video lesson presents a series of stories related to Electroplating and begins with a story about house gates as an example of the common items related to the Electroplating topic. Prerequisites for this lesson are knowledge of the basic concepts of electrolysis and chemical equations. The lesson will take about 60 minutes to complete, but you may want to divide the lesson into two classes if the activities require more time.

Subject:
Chemistry
Physical Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Hafizah Binti Nasir, Mohd Fared Bin Samin
Date Added:
07/02/2021
Element, Mixture, Compound
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain a better understanding of the different types of materials as pure substances and mixtures and learn to distinguish between homogeneous and heterogeneous mixtures by discussing an assortment of example materials they use and encounter in their daily lives.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Parnia Mohammadi
Roberto Dimaliwat
Date Added:
09/18/2014
Elements of Mechanical Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliverables of their project. Student assessment is based upon mastery of the course materials and the student's ability to synthesize, model and fabricate a mechanical device subject to engineering constraints (e.g. cost and time/schedule).

Subject:
Applied Science
Career and Technical Education
Chemistry
Engineering
Genetics
Life Science
Manufacturing
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Culpepper, Martin
Date Added:
01/01/2009
Energy Forms, States and Conversions
Read the Fine Print
Educational Use
Rating
0.0 stars

The students participate in many demonstrations during the first day of this lesson to learn basic concepts related to the forms and states of energy. This knowledge is then applied the second day as they assess various everyday objects to determine what forms of energy are transformed to accomplish the object's intended task. The students use block diagrams to illustrate the form and state of energy flowing into and out of the process.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Engineering Out of Harry Situations: The Science Behind Harry Potter
Read the Fine Print
Educational Use
Rating
0.0 stars

Under the "The Science Behind Harry Potter" theme, a succession of diverse complex scientific topics are presented to students through direct immersive interaction. Student interest is piqued by the incorporation of popular culture into the classroom via a series of interactive, hands-on Harry Potter/movie-themed lessons and activities. They learn about the basics of acid/base chemistry (invisible ink), genetics and trait prediction (parseltongue trait in families), and force and projectile motion (motion of the thrown remembrall). In each lesson and activity, students are also made aware of the engineering connections to these fields of scientific study.

Subject:
Applied Science
Chemistry
Engineering
Genetics
Life Science
Mathematics
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Engineering Polymers from Potatoes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to polymer science and take on the role of chemical engineers to create and test a plastic made from starch. After testing their potato-based plastic, students design a product that takes advantage of the polymer’s unique properties. At the end of the engineering design process, students present their product in a development “pitch” that communicates their idea to potential investors.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Rebecca Hooper
Robin Lewis
Date Added:
02/12/2019
Engineering and the Periodic Table
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the periodic table and how pervasive the elements are in our daily lives. After reviewing the table organization and facts about the first 20 elements, they play an element identification game. They also learn that engineers incorporate these elements into the design of new products and processes. Acting as computer and animation engineers, students creatively express their new knowledge by creating a superhero character based on of the elements they now know so well. They will then pair with another superhero and create a dynamic duo out of the two elements, which will represent a molecule.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
10/14/2015