About one-third of Patriot soldiers at the Battle of Bunker Hill were …
About one-third of Patriot soldiers at the Battle of Bunker Hill were African Americans. Census data also reveal that there were slaves and free Blacks living in the North in 1790 and later years. What were the experiences of African-American individuals in the North in the years between the American Revolution and the Civil War?
Building on Complex Adaptive Systems theory and basic Agent Based Modeling knowledge …
Building on Complex Adaptive Systems theory and basic Agent Based Modeling knowledge presented in SPM4530, the Advanced course will focus on the model development process. The students are expected to conceptualize, develop and verify a model during the course, individually or in a group. The modeling tasks will be, as much as possible, based on real life research problems, formulated by various research groups from within and outside the faculty. Study Goals The main goal of the course is to learn how to form a modeling question, perform a system decomposition, conceptualize and formalize the system elements, implement and verify the simulation and validate an Agent Based Model of a socio-technical system.
Our human society consists of many intertwined Large Scale Socio-Technical Systems (LSSTS), …
Our human society consists of many intertwined Large Scale Socio-Technical Systems (LSSTS), such as infrastructures, industrial networks, the financial systems etc. Environmental pressures created by these systems on EarthŰŞs carrying capacity are leading to exhaustion of natural resources, loss of habitats and biodiversity, and are causing a resource and climate crisis. To avoid this sustainability crisis, we urgently need to transform our production and consumption patterns. Given that we, as inhabitants of this planet, are part of a complex and integrated global system, where and how should we begin this transformation? And how can we also ensure that our transformation efforts will lead to a sustainable world? LSSTS and the ecosystems that they are embedded in are known to be Complex Adaptive Systems (CAS). According to John Holland CAS are "...a dynamic network of many agents (which may represent cells, species, individuals, firms, nations) acting in parallel, constantly acting and reacting to what the other agents are doing. The control of a CAS tends to be highly dispersed and decentralized. If there is to be any coherent behavior in the system, it will have to to arise from competition and cooperation among the agents themselves. The overall behavior of the system is the result of a huge number of decisions made every moment" by many individual agents. Understanding Complex Adaptive Systems requires tools that themselves are complex to create and understand. Shalizi defines Agent Based Modeling as "An agent is a persistent thing which has some state we find worth representing, and which interacts with other agents, mutually modifying each otherŰŞs states. The components of an agent-based model are a collection of agents and their states, the rules governing the interactions of the agents and the environment within which they live." This course will explore the theory of CAS and their main properties. It will also teach you how to work with Agent Based Models in order to model and understand CAS.
This course asks students to consider the ways in which social theorists, …
This course asks students to consider the ways in which social theorists, institutional reformers, and political revolutionaries in the 17th through 19th centuries seized upon insights developed in the natural sciences and mathematics to change themselves and the society in which they lived. Students study trials, art, literature and music to understand developments in Europe and its colonies in these two centuries. Covers works by Newton, Locke, Voltaire, Rousseau, Marx, and Darwin.
In this unit, students learn about the form and function of the …
In this unit, students learn about the form and function of the human heart through lecture, research and dissection. Following the steps of the Legacy Cycle, students brainstorm, research, design and present viable solutions to various heart conditions as presented through a unit challenge. Additionally, students study how heart valves work and investigate how faulty valves can be replaced with new ones through advancements in engineering and technology. This unit demonstrates to students how and why the heart is such a powerful organ in our bodies
All art is political in the sense that all art takes place …
All art is political in the sense that all art takes place in the public arena and engages with an already existing ideology. Chinese artist, Ai Weiwei, offers an important contemporary example. The news that Chinese artist Ai Weiwei has been detained by authorities has prompted significant concern. Ai Weiwei has ben arrested by the Chinese authorities.
By watching and performing several simple experiments, students develop an understanding of …
By watching and performing several simple experiments, students develop an understanding of the properties of air: it has mass, it takes up space, it can move, it exerts pressure, it can do work.
This is Activity 12 of a set of Level 1 activities designed …
This is Activity 12 of a set of Level 1 activities designed by the Science Center for Teaching, Outreach, and Research on Meteorology (STORM) Project. The authors suggest that previous activities in the unit be completed before Activity 12: Air Masses, including those that address pressure systems and dew point temperature. In Activity 12, the students learn about the four main types of air masses that affect weather in the United States, their characteristic temperatures, and humidity levels as it relates to dew point temperatures. The lesson plan follows the 5E format. Initially, students discuss local weather and then examine surface temperature and dew point data on maps to determine patterns and possible locations of air masses. They learn about the source regions of air masses and compare their maps to a forecast weather map with fronts and pressure systems drawn in. During the Extension phase, students access current maps with surface and dew point temperatures at http://www.uni.edu/storm/activities/level1 and try to identify locations of air masses. They sketch in fronts and compare their results to the fronts map. Evaluation consists of collection of student papers.
Students are introduced to measuring and identifying sources of air pollution, as …
Students are introduced to measuring and identifying sources of air pollution, as well as how environmental engineers try to control and limit the amount of air pollution. In Part 1, students are introduced to nitrogen dioxide as an air pollutant and how it is quantified. Major sources are identified, using EPA bar graphs. Students identify major cities and determine their latitudes and longitudes. They estimate NO2 values from color maps showing monthly NO2 averages from two sources: a NASA satellite and the WSU forecast model AIRPACT. In Part 2, students continue to estimate NO2 values from color maps and use Excel to calculate differences and ratios to determine the model's performance. They gain experience working with very large numbers written in scientific notation, as well as spreadsheet application capabilities.
Air pressure is pushing on us all the time although we do …
Air pressure is pushing on us all the time although we do not usually notice it. In this activity, students learn about the units of pressure and get a sense of just how much air pressure is pushing on them.
Students engage in hands-on, true-to-life research experiences on air quality topics chosen …
Students engage in hands-on, true-to-life research experiences on air quality topics chosen for personal interest through a unit composed of one lesson and five associated activities. Using a project-based learning approach suitable for secondary science classrooms and low-cost air quality monitors, students gain the background and skills needed to conduct their own air quality research projects. The curriculum provides: 1) an introduction to air quality science, 2) data collection practice, 3) data analysis practice, 4) help planning and conducting a research project and 5) guidance in interpreting data and presenting research in professional poster format. The comprehensive curriculum requires no pre-requisite knowledge of air quality science or engineering. This curriculum takes advantage of low-cost, next-generation, open-source air quality monitors called Pods. These monitors were developed in a mechanical engineering lab at the University of Colorado Boulder and are used for academic research as well as education and outreach. The monitors are made available for use with this curriculum through AQ-IQ Kits that may be rented from the university by teachers. Alternatively, nearly the entire unit, including the student-directed projects, could also be completed without an air quality monitor. For example, students can design research projects that utilize existing air quality data instead of collecting their own, which is highly feasible since much data is publically available. In addition, other low-cost monitors could be used instead of the Pods. Also, the curriculum is intentionally flexible, so that the lesson and its activities can be used individually. See the Other section for details about the Pods and ideas for alternative equipment, usage without air quality monitors, and adjustments to individually teach the lesson and activities.
Introduces the various aspects of present and future Air Traffic Control systems. …
Introduces the various aspects of present and future Air Traffic Control systems. Descriptions of the present system: systems-analysis approach to problems of capacity and safety; surveillance, including NAS and ARTS; navigation subsystem technology; aircraft guidance and control; communications; collision avoidance systems; sequencing and spacing in terminal areas; future directions and development; critical discussion of past proposals and of probable future problem areas.
Subject addresses the architecting of air transportation systems. Focuses on the conceptual …
Subject addresses the architecting of air transportation systems. Focuses on the conceptual phase of product definition include technical, economic, market, environmental, regulatory, legal, manufacturing, and societal factors. Subject centers on a realistic system case study and includes a number of lectures from industry and government. Past examples included the Very Large Transport Aircraft, a Supersonic Business Jet and a Next Generation Cargo System. Subject identifies the critical system level issues and analyzes them in depth via student team projects and individual assignments. The overall goal of the semester is to produce a business plan and a system specifications document that can be used to assess candidate systems.
Students are introduced to air masses, with an emphasis on the differences …
Students are introduced to air masses, with an emphasis on the differences between and characteristics of high- versus low-pressure air systems. Students also hear about weather forecasting instrumentation and how engineers work to improve these instruments for atmospheric measurements on Earth and in space.
Students learn what causes air pollution and how to investigate the different …
Students learn what causes air pollution and how to investigate the different pollutants that exist, such as toxic gases and particulate matter. They investigate the technologies developed by engineers to reduce air pollution.
Brief review of applied aerodynamics and modern approaches in aircraft stability and …
Brief review of applied aerodynamics and modern approaches in aircraft stability and control. Static stability and trim. Stability derivatives and characteristic longitudinal and lateral-directional motions. Physical effects of wing, fuselage, and tail on aircraft motion. Flight vehicle stabilization by classical and modern control techniques. Time and frequency domain analysis of control system performance. Human pilot models and pilot-in-the-loop control with applications. V/STOL stability, dynamics, and control during transition from hover to forward flight. Parameter sensitivity and handling quality analysis of aircraft through variable flight conditions. Brief discussion of motion at high angles-of-attack, roll coupling, and other nonlinear flight regimes.
16.885J offers an holistic view of the aircraft as a system, covering: …
16.885J offers an holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams retrospectively analyze an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Oral and written versions of the case study are delivered. For the Fall 2005 term, the class focuses on a systems engineering analysis of the Space Shuttle. It offers study of both design and operations of the shuttle, with frequent lectures by outside experts. Students choose specific shuttle systems for detailed analysis and develop new subsystem designs using state of the art technology.
Overview of airline management decision processes, with a focus on economic issues …
Overview of airline management decision processes, with a focus on economic issues and their relationship to operations planning models and decision support tools. Application of economic models of demand, pricing, costs, and supply to airline markets and networks. Examination of industry practice and emerging methods for fleet planning, route network design, scheduling, pricing and revenue management, with emphasis on the interactions between the components of airline management and profit objectives in competitive environments. Students participate in a competitive airline management simulation game as part of the subject requirements.
AlcoholEdu brings strategies to prevent teenage drinking to the classroom by helping …
AlcoholEdu brings strategies to prevent teenage drinking to the classroom by helping students examine the effects that alcohol has on their brain and body.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.