Students learn about using renewable energy from the Sun for heating and …
Students learn about using renewable energy from the Sun for heating and cooking as they build and compare the performance of four solar cooker designs. They explore the concepts of insulation, reflection, absorption, conduction and convection.
Students learn and apply concepts in thermodynamics and energy—mainly convection, conduction, and …
Students learn and apply concepts in thermodynamics and energy—mainly convection, conduction, and radiation— to solve a challenge. This is accomplished by splitting students into teams and having them follow the engineering design process to design and build a small insulated box, with the goal of keeping an ice cube and a Popsicle from melting. Students are given a short traditional lecture to help familiarize them with the basic rules of thermodynamics and an introduction to materials science while they continue to monitor the ice within their team’s box.
Thermal backgrounds in space. Cosmological principle and its consequences: Newtonian cosmology and …
Thermal backgrounds in space. Cosmological principle and its consequences: Newtonian cosmology and types of "universes"; survey of relativistic cosmology; horizons. Overview of evolution in cosmology; radiation and element synthesis; physical models of the "early stages." Formation of large-scale structure to variability of physical laws. First and last states. Some knowledge of relativity expected. 8.962 recommended though not required. This course provides an overview of astrophysical cosmology with emphasis on the Cosmic Microwave Background (CMB) radiation, galaxies and related phenomena at high redshift, and cosmic structure formation. Additional topics include cosmic inflation, nucleosynthesis and baryosynthesis, quasar (QSO) absorption lines, and gamma-ray bursts. Some background in general relativity is assumed.
Students explore the science of microbial fuel cells (MFCs) by using a …
Students explore the science of microbial fuel cells (MFCs) by using a molecular modeling set to model the processes of photosynthesis and cellular respiration—building on the concept of MFCs that they learned in the associated lesson, “Photosynthesis and Cellular Respiration at the Atomic Level.” Students demonstrate the law of conservation of matter by counting atoms in the molecular modeling set. They also re-engineer a new molecular model from which to further gain an understanding of these concepts.
The students discover the basics of heat transfer in this activity by …
The students discover the basics of heat transfer in this activity by constructing a constant pressure calorimeter to determine the heat of solution of potassium chloride in water. They first predict the amount of heat consumed by the reaction using analytical techniques. Then they calculate the specific heat of water using tabulated data, and use this information to predict the temperature change. Next, the students will design and build a calorimeter and then determine its specific heat. After determining the predicted heat lost to the device, students will test the heat of solution. The heat given off by the reaction can be calculated from the change in temperature of the water using an equation of heat transfer. They will compare this with the value they predicted with their calculations, and then finish by discussing the error and its sources, and identifying how to improve their design to minimize these errors.
Using solar images and date obtained from Astronomical Observatory of the University …
Using solar images and date obtained from Astronomical Observatory of the University of Coimbra lets you study the sunspots and their behaviour over days.
Students learn about local and planetary physical geography / geology, toponymy, planetary …
Students learn about local and planetary physical geography / geology, toponymy, planetary landing site selection and cartography. The students learn a complex process of landscape evaluation and city planning, based on the interpretation of photomaps or digital terrain models.
Students learn about the physical force of linear momentum movement in a …
Students learn about the physical force of linear momentum movement in a straight line by investigating collisions. They learn an equation that engineers use to describe momentum. Students also investigate the psychological phenomenon of momentum; they see how the "big mo" of the bandwagon effect contributes to the development of fads and manias, and how modern technology and mass media accelerate and intensify the effect.
In this activity, students learn about astronomical phenomena we can see in …
In this activity, students learn about astronomical phenomena we can see in the universe and create their own music inspired by astronomical images. By performing original musical improvisations, students enhance their knowledge of what astronomical phenomena are represented in images and experiment with creative ways of representing these using music. This activity engages students in first hand exploration of music and astronomy connections.
Students learn about the role engineers and mathematicians play in developing the …
Students learn about the role engineers and mathematicians play in developing the perfect bungee cord length by simulating and experimenting with bungee jumping using washers and rubber bands. Working as if they are engineers for a (hypothetical) amusement park, students are challenged to develop a show-stopping bungee jumping ride that is safe. To do this, they must find the maximum length of the bungee cord that permits jumpers (such as brave Washy!) to get as close to the ground as possible without going "splat"! This requires them to learn about force and displacement and run an experiment. Student teams collect and plot displacement data and calculate the slope, linear equation of the line of best fit and spring constant using Hooke's law. Students make hypotheses, interpret scatter plots looking for correlations, and consider possible sources of error. An activity worksheet, pre/post quizzes and a PowerPoint® presentation are included.
Students are introduced to servos and the flex sensor as they create …
Students are introduced to servos and the flex sensor as they create simple, one-jointed, finger robots controlled by Arduino. Servos are motors with feedback and are extensively used in industrial and consumer applications—from large industrial car-manufacturing robots that use servos to hold heavy metal and precisely weld components together, to prosthetic hands that rely on servos to provide fine motor control. Students use Arduino microcontrollers and flex sensors to read finger flexes, which they process to send angle information to the servos. Students create working circuits; use the constrain, map and smoothing commands; learn what is meant by library and abstraction in a coding context; and may even combine team finger designs to create a complete prosthetic hand of bendable fingers.
In this activity, students familiarise themselves with asteroids. They discuss and build …
In this activity, students familiarise themselves with asteroids. They discuss and build their own model asteroids. They learn how asteroids are formed in the Solar System. At the end of the activity, each student has their own model asteroid made from clay.
Students’ background understanding of electricity and circuit-building is reinforced as they create …
Students’ background understanding of electricity and circuit-building is reinforced as they create wearable, light-up e-textile pins. They also tap their creative and artistic abilities as they plan and produce attractive end product “wearables.” Using fabric, LED lights, conductive thread (made of stainless steel) and small battery packs, students design and fabricate their own unique light-up pins. This involves putting together the circuitry so the sewn-in LEDs light up. Connecting electronics with stitching instead of soldering gives students a unique and tangible understanding of how electrical circuits operate.
Students create silver nanoparticles using a chemical process; however, since these particles …
Students create silver nanoparticles using a chemical process; however, since these particles are not observable to the naked eye, they use empirical evidence and reasoning to discover them. Students first look for evidence of a chemical reaction by mixing various solutions and observing any reactions that may occur. Students discover that copper and tannic acids from tea reduce silver nitrate, which in turn form silver. They complete the reaction, allow the water to evaporate, and observe the silver nanoparticles they created in plastic dishes using a stereo microscope. Students iterate on their initial process and test to see if they can improve the manufacturing process of silver nanoparticles.
Student teams investigate the properties of electromagnets. They create their own small …
Student teams investigate the properties of electromagnets. They create their own small electromagnet and experiment with ways to change its strength to pick up more paper clips. Students learn about ways that engineers use electromagnets in everyday applications.
A series of presentations on an advanced topic in the field of …
A series of presentations on an advanced topic in the field of geology by the visiting William Otis Crosby lecturer. The Crosby lectureship is awarded to a distinguished international scientist each year to introduce new scientific perspectives to the MIT community. Subject content and structure vary from year to year.
This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry …
This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry of diffraction, structure factors, phase problem, direct methods, Patterson methods, electron density maps, structure refinement, how to grow good crystals, powder methods, limits of X-ray diffraction methods, and structure data bases.
This course in crystal structure refinement examines the practical aspects of crystal …
This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.
Students perform DNA forensics using food coloring to enhance their understanding of …
Students perform DNA forensics using food coloring to enhance their understanding of DNA fingerprinting, restriction enzymes, genotyping and DNA gel electrophoresis. They place small drops of different food coloring ("water-based paint") on strips of filter paper and then place one paper strip end in water. As water travels along the paper strips, students observe the pigments that compose the paint decompose into their color components. This is an example of the chromatography concept applied to DNA forensics, with the pigments in the paint that define the color being analogous to DNA fragments of different lengths.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.