Updating search results...

Search Resources

2825 Results

View
Selected filters:
  • Applied Science
Heave Ho!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover the scientific basis for the use of inclined planes. Using a spring scale, a bag of rocks and an inclined plane, student groups explore how dragging objects up a slope is easier than lifting them straight up into the air. Also, students are introduced to the scientific method and basic principles of experimentation. To conclude, students imagine and design their own uses for inclined planes.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mike McGroddy
Date Added:
10/14/2015
Heavy Helicopters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about weight and drag forces by making paper helicopters and measuring how adding more weight affects the time it takes for the helicopters to fall to the ground.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Hello, Are You Listening?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain a basic understanding of the engineering components behind telecommunications, in particular, the way telephone communication works to link one phone to another for conventional landline and cellular telephones. During this entire-class activity, students simulate how phone calls are connected by acting out a variety of searches for both local and long-distance calls. Students end up with a good understanding of how phone calls are transmitted from callers to recipients.

Subject:
Applied Science
Education
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Martha Cyr
Date Added:
09/18/2014
Hello (Real) World with ROS
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Are you interested in taking your first steps in robotics? Do you seek a practical approach and want to learn by doing? Join our course and learn how to program a complete real-world robotic system with ROS!

The Robot Operating System (ROS) enables you to quickly build robotic applications through access to a large set of open-source software and tools. Over the years, ROS has become the essential tool for roboticists. A large community surrounds ROS and there has been extensive input from industrial users in the development of these tools.

Many of the new advanced robot capabilities for manipulation, perception, and navigation have been developed using ROS. Companies such as Airbus and Boeing are using ROS for several of their applications. And Delft University of Technology’s Team Delft Robotic System won two challenges at the Amazon Robotics Challenge 2016 with robots developed with ROS.

In this course, you will learn to use different ROS tools to create a complete robotic application. You will be working with your own standalone Ubuntu-Linux installations and with industrial and mobile robots on the physics-based simulation engine, Gazebo. You will learn to program and configure basic robotic tasks such as pick-and-place objects, and navigate through obstacles. You will then integrate all this knowledge to build an industrial production line with two robotic arms and a mobile robot.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
M. Baioumy
dr. C.H. Corbato
dr. M. Bharatheesha
ir. G.A. van der Hoorn
prof.dr.ir. M. Wisse
Date Added:
07/14/2021
Help Bill! Bioprinting Skin, Muscle and Bone
Read the Fine Print
Educational Use
Rating
0.0 stars

Students operate mock 3D bioprinters in order to print tissue constructs of bone, muscle and skin for a fictitious trauma patient, Bill. The model bioprinters are made from ordinary materials— cardboard, dowels, wood, spools, duct tape, zip ties and glue (constructed by the teacher or the students)—and use squeeze bags of icing to lay down tissue layers. Student groups apply what they learned about biological tissue composition and tissue engineering in the associated lesson to design and fabricate model replacement tissues. They tangibly learn about the technical aspects and challenges of 3D bioprinting technology, as well as great detail about the complex cellular composition of tissues. At activity end, teams present their prototype designs to the class.

Subject:
Applied Science
Biology
Engineering
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
A. L. Peirce Starling
Angela Sickels
Hunter Sheldon
Nicholas Asby
Ryan Tasker-Benson
Shayn M. Peirce
Timothy Allen
Date Added:
06/20/2017
Here Comes the Hurricane! Saving Lives through Logical Reasoning and Computer Science
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a hurricane tracking map to measure the distance from a specific latitude and longitude location of the eye of a hurricane to a city. Then they use the map's scale factor to convert the distance to miles. They also apply the distance formula by creating an x-y coordinate plane on the map. Students are challenged to analyze what data might be used by computer science engineers to write code that generates hurricane tracking models. Then students analyze a MATLAB® computer code that uses the distance formula repetitively to generate a table of data that tracks a hurricane at specific time intervals. Students come to realize that using a computer program to generate the calculations (instead of by hand) is very advantageous for a dynamic situation like tracking storm movements. Their inspection of some MATLAB code helps them understand how it communicates what to do using mathematical formulas, logical instructions and repeated tasks. They also conclude that the example program is too simplistic to really be a useful tool; useful computer model tools must necessarily be much more complex.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Armando Vital
Fritz Claydon
Justin Chang
K. B. Nakshatrala
Rodrigues
Stuart Long
Date Added:
09/18/2014
Heredity Mix n Match
Read the Fine Print
Educational Use
Rating
0.0 stars

Students randomly select jelly beans (or other candy) that represent genes for several human traits such as tongue-rolling ability and eye color. Then, working in pairs (preferably of mixed gender), students randomly choose new pairs of jelly beans from those corresponding to their own genotypes. The new pairs are placed on toothpicks to represent the chromosomes of the couple's offspring. Finally, students compare genotypes and phenotypes of parents and offspring for all the "couples" in the class. In particular, they look to see if there are cases where parents and offspring share the exact same genotype and/or phenotype, and consider how the results would differ if they repeated the simulation using more than four traits.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/26/2008
Hi Ho, Hi Ho, It's to the Mine We Go
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity simulates the extraction of limited, nonrenewable resources from a "mine," so students can experience first-hand how resource extraction becomes more difficult over time. Students gather data and graph their results to determine the peak in resource extraction. They learn about the limitations of nonrenewable resources, and how these resources are currently used.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristen Brown
Marissa H. Forbes
Date Added:
09/18/2014
Hidden in Plain Sight
Read the Fine Print
Educational Use
Rating
0.0 stars

Steganography is the science and art of hiding messages in plain sight so only the sender and intended recipient know the existence of a message. Steganography can be characterized as security through obscurity. Through this lesson, students experience a portion of the engineering design process as they research steganography and steganographic methods; identify problems, criteria and constraints; brainstorm possible solutions; and generate ideas. These are the critical first steps in the engineering design process, often overlooked by students who want to get to the "doing" phases—designing, building and testing. In computer science, a thorough design phase makes program implementation much easier and more effective. Students obtain practice with a portion of the design process that may be less exciting, but is just as important as the other steps in the process.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Derek Babb
Date Added:
09/18/2014
High Arches, Low Arches
Read the Fine Print
Educational Use
Rating
0.0 stars

A main concern of shoe engineers is creating shoes that provide the right amount of arch support to prevent (or fix) common gait misalignments that lead to injury. During this activity, students look at their own footprints and determine whether they have either of the two most prominent gait misalignments: overpronation (collapsing arches) or supination (high arches). Knowing the shape of a person's foot, and their natural arch movement is necessary to design shoes to fix these gain alignments.

Subject:
Applied Science
Engineering
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eszter Horanyi
Date Added:
09/18/2014
High Performance Computing
Unrestricted Use
CC BY
Rating
0.0 stars

The purpose of this book is to teach new programmers and scientists about the basics of High Performance Computing. Too many parallel and high performance computing books focus on the architecture, theory and computer science surrounding HPC. This book speaks to the practicing chemistry student, physicist, or biologist who need to write and run their programs as part of their research.

Subject:
Applied Science
Computer Science
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax CNX
Author:
Charles Severance
Kevin Dowd
Date Added:
07/07/2021
High Speed Communication Circuits and Systems, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.976 covers system level issues of high speed communication systems and their impact on circuit requirements, with primary focus being placed on wireless and broadband data link applications. Course topics include: transistor level design techniques for high speed amplifiers, mixers, VCO's, registers and gates, and phase locked loops, and the impact of transmission line effects on circuit designs for narrowband and broadband systems. Finally, behavioral level simulation techniques are presented for phase locked loops and other communication circuits.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Perrott, Michael H.
Date Added:
01/01/2003
Highlighting the Neuron
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson on the brain's neural networks, students investigate the structure and function of the neuron. They discover ways in which engineers apply this knowledge to the development of devices that can activate neurons. After a review of the nervous system specifically its organs, tissue, and specialized cells, called neurons students learn about the parts of the neuron. They explore the cell body, dendrites, axon and axon terminal, and learn how these structures enable neurons to send messages. They learn about the connections between engineering and other fields of study, and the importance of research, as they complete the lesson tasks.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janelle Orange
Date Added:
09/18/2014
History and Theory of Historic Preservation, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class examines the history and theory of historic preservation, focusing on the United States, but with reference to traditions and practices in other countries. The class is designed to examine the largely untold history of the historic preservation movement in this country, and explore what laws, public policies and cultural attitudes shape how we preserve or do not preserve the built environment. The class will give students a grounding in the history, theory and practice of historic preservation, but is not an applied, technical course.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Page, Max
Date Added:
01/01/2007
The History of Computing, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Examines the development of computing techniques and technology in the nineteenth and twentieth centuries, particularly critical evaluation of how the very idea of "computer" changes and evolves over time. Emphasis is on technical innovation, industrial development, social context, and the role of government. Topics include Babbage, Hollerith, differential analyzers, control systems, ENIAC, radar, operations research, computers as scientific instruments, the rise of "computer science," artificial intelligence, personal computers, and networks. Includes class visits by members of the MIT community who have made important historical contributions. This course focuses on one particular aspect of the history of computing: the use of the computer as a scientific instrument. The electronic digital computer was invented to do science, and its applications range from physics to mathematics to biology to the humanities. What has been the impact of computing on the practice of science? Is the computer different from other scientific instruments? Is computer simulation a valid form of scientific experiment? Can computer models be viewed as surrogate theories? How does the computer change the way scientists approach the notions of proof, expertise, and discovery? No comprehensive history of scientific computing has yet been written. This seminar examines scientific articles, participants' memoirs, and works by historians, sociologists, and anthropologists of science to provide multiple perspectives on the use of computers in diverse fields of physical, biological, and social sciences and the humanities. We explore how the computer transformed scientific practice, and how the culture of computing was influenced, in turn, by scientific applications.

Subject:
Applied Science
Computer Science
Linguistics
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Gerovitch, Slava
Date Added:
01/01/2004
Holographic Imaging, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A laboratory-based exploration of the principles, techniques, and applications of holography as a 3-D imaging communication medium. Begins with interference and diffraction, and proceeds through laser off-axis holography to white-light "rainbow" and reflection holography. Term project required, with oral presentation and written report. MAS.450 is a laboratory course about holography and holographic imaging. This course teaches holography from a scientific and analytical point of view, moving from interference and diffraction to imaging of single points to the display of three-dimensional images. Using a "hands-on" approach, students explore the underlying physical phenomena that make holograms work, as well as designing laboratory setups to make their own images. The course also teaches mathematical techniques that allow the behavior of holography to be understood, predicted, and harnessed. Holography today brings together the fields of optics, chemistry, computer science, electrical engineering, visualization, three-dimensional display, and human perception in a unique and comprehensive way. As such, MAS.450 offers interesting and useful exposure to a wide range of principles and ideas. As a course satisfying the Institute Laboratory Requirement, MAS.450 teaches about science, scientific research, and the scientific method through observation and exploration, hinting at the excitement that inventors feel before they put their final equations to paper.

Subject:
Applied Science
Arts and Humanities
Computer Science
Visual Arts
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Benton, Stephen
Halle, Michael
Date Added:
01/01/2003
Home, Sweet Home!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, the students will use wax paper shaped as leaves and kite string to build a shelter to protect them from the rain. The students will then test the shelters for durability and water resistance.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Homes for Different Climates
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about some of the different climate zones in China and consider what would be appropriate design, construction and materials for houses in those areas. This prepares them to conduct the associated activity(ies) in which they design, build and test small model homes for three different climate zones.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail T. Watrous
Denise W. Carlson
Janet Yowell
Stephanie Rivale
Date Added:
09/18/2014
Homeward Bound
Read the Fine Print
Educational Use
Rating
0.0 stars

Students review the what they have learned throughout the five lessons in this unit. This includes a review of many types of engineers, reminding students of the various everyday products, structures and processes they design and create in our world.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Janet Yowell
Katherine Beggs
Date Added:
09/18/2014
The Hospital of the Future: Engineering through Robotics and Automated Patient Care
Read the Fine Print
Educational Use
Rating
0.0 stars

Students further their understanding of the engineering design process while combining mechanical engineering and bioengineering to create an automated medical device. During the activity, students are given a fictional client statement and are required to follow the steps of the design process to create medical devices that help reduce the workload for hospital workers and increase the quality of patient care.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jared R. Quinn
Jeanne Hubelbank
Kristen Billiar
Terri Camesano
Date Added:
10/14/2015