Updating search results...

Search Resources

23 Results

View
Selected filters:
  • mutation
Automated Software Testing: Advanced Skills for Java Developers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Software testing gets a bad rap for being difficult, time-consuming, redundant, and above all – boring. But in fact, it is a proven way to ensure that your software will work flawlessly and can meet release schedules.

In a two-course series, we will teach you automated software testing in an inspiring way. We will show you that testing is not as daunting a task as you might think, and how automated testing will make you a better developer who programs excellent software.

This second course builds upon the first course’s material. It covers more advanced tools and techniques and their applications, now utilizing more than just JUnit. Key topics include Test-Driven Development, state-based and web testing, combinatorial testing, mutation testing, static analysis tools, and property-based testing.

This is a highly practical course. Throughout the lessons, you will test various programs by means of different techniques. By the end, you will be able to choose the best testing strategies for different projects.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. M. Aniche
Prof.dr. A. Van Deursen
Date Added:
07/14/2021
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Date Added:
07/18/2021
Biology, Evolutionary Processes, The Evolution of Populations, Population Genetics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Describe the different types of variation in a populationExplain why only heritable variation can be acted upon by natural selectionDescribe genetic drift and the bottleneck effectExplain how each evolutionary force can influence the allele frequencies of a population

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
OpenStax College
Date Added:
07/18/2021
Biology, The Cell, Cell Reproduction, Cancer and the Cell Cycle
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Describe how cancer is caused by uncontrolled cell growthUnderstand how proto-oncogenes are normal cell genes that, when mutated, become oncogenesDescribe how tumor suppressors functionExplain how mutant tumor suppressors cause cancer

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
OpenStax College
Date Added:
07/18/2021
Directed Evolution: Engineering Biocatalysts, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Enzymes, nature's catalysts, are remarkable biomolecules capable of extraordinary specificity and selectivity. Directed evolution has been used to produce enzymes with many unique properties, including altered substrate specificity, thermal stability, organic solvent resistance, and enantioselectivity--selectivity of one stereoisomer over another. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Love, Kerry
Date Added:
01/01/2008
Genetics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subject:
Biology
Education
Genetics
Life Science
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Student Guide
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fink, Gerald
Kaiser, Chris
Mischke, Michelle
Samson, Leona
Date Added:
01/01/2004
Macroepidemiology (BE.102), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents a unique and challenging perspective on the causes of human disease and mortality. The course focuses on analyses of major causes of mortality in the US since 1900: cancer cardiovascular and cerebrovascular diseases, diabetes, infectious diseases. Students create analytical models to derive estimates for historically variant population risk factors and physiological rate parameters, and conduct analyses of familial data to separately estimate inherited and environmental risks. The course evaluates the basic population genetics of dominant, recessive and non-deleterious inherited risk factors.

Subject:
Applied Science
Environmental Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Thilly, William
Date Added:
01/01/2005
Mutation Telephone
Read the Fine Print
Educational Use
Rating
0.0 stars

Students perform an activity similar to the childhood “telephone” game in which each communication step represents a biological process related to the passage of DNA from one cell to another. This game tangibly illustrates how DNA mutations can happen over several cell generations and the effects the mutations can have on the proteins that cells need to produce. Next, students use the results from the “telephone” game (normal, substitution, deletion or insertion) to test how the mutation affects the survivability of an organism in the wild. Through simple enactments, students act as “predators” and “eat” (remove) the organism from the environment, demonstrating natural selection based on mutation.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Kent Kurashima
Kimberly Anderson
Matthew Zelisko
Date Added:
07/07/2021
Mutations
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about mutations to both DNA and chromosomes, and uncontrolled changes to the genetic code. They are introduced to small-scale mutations (substitutions, deletions and insertions) and large-scale mutations (deletion duplications, inversions, insertions, translocations and nondisjunctions). The effects of different mutations are studied as well as environmental factors that may increase the likelihood of mutations. A PowerPoint® presentation and pre/post-assessments are provided.

Subject:
Biology
Life Science
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Kent Kurashima
Kimberly Anderson
Matthew Zelisko
Date Added:
07/07/2021
Psychology
Unrestricted Use
CC BY
Rating
0.0 stars

Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan

Subject:
Psychology
Social Science
Material Type:
Full Course
Date Added:
07/18/2021
Psychology, Biopsychology, Human Genetics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Explain the basic principles of the theory of evolution by natural selectionDescribe the differences between genotype and phenotypeDiscuss how gene-environment interactions are critical for expression of physical and psychological characteristics

Subject:
Psychology
Social Science
Material Type:
Module
Author:
OpenStax College
Date Added:
07/18/2021