Updating search results...

Search Resources

11 Results

View
Selected filters:
  • mrna
Antibiotics, Toxins, and Protein Engineering, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sassanfar, Mandana
Date Added:
01/01/2007
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Date Added:
07/18/2021
Biology, The Chemistry of Life, Biological Macromolecules, Nucleic Acids
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Describe the structure of nucleic acids and define the two types of nucleic acidsExplain the structure and role of DNAExplain the structure and roles of RNA

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
OpenStax College
Date Added:
07/18/2021
Cell Biology: Structure and Functions of the Nucleus, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sharp, Phillip
Young, Richard
Date Added:
01/01/2010
DNA: The Human Body Recipe
Read the Fine Print
Educational Use
Rating
0.0 stars

As a class, students work through an example showing how DNA provides the "recipe" for making our body proteins. They see how the pattern of nucleotide bases (adenine, thymine, guanine, cytosine) forms the double helix ladder shape of DNA, and serves as the code for the steps required to make genes. They also learn some ways that engineers and scientists are applying their understanding of DNA in our world.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Lesson Plan
Teaching/Learning Strategy
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Frank Burkholder
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
Experimental Molecular Biology: Biotechnology II, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Laboratory uses yeast as an experimental system to study fundamental problems in understanding cell cycle and chromosome segregation. Experimental work combines genetic approaches with the tools of molecular and cell biology to identify and characterize novel genes that act on these processes. Instruction and practice in written and oral communication provided.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2005
Genetics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subject:
Biology
Education
Genetics
Life Science
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Student Guide
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fink, Gerald
Kaiser, Chris
Mischke, Michelle
Samson, Leona
Date Added:
01/01/2004
Introduction to Biology, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2004
RNA Interference: A New Tool for Genetic Analysis and Therapeutics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Seminar covering topics of current interest in biology. Includes reading and analysis of research papers and student presentations. Contact Biology Education Office for topics. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has already changed the way biomedical research is done and that may even prove useful for genetic interventions in a clinical context. In this course, students learn how RNAi was discovered, how it works, and what its physiological relevance might be. How RNAi can be harnessed to modulate gene expression and perform genetic screens, both in cells and in various organisms is also covered. Finally, this course examines the first attempts to use RNAi for the treatment of models of human diseases in experimental animals.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kissler, Stephan
Ventura, Andrea
Date Added:
01/01/2004