Updating search results...

Search Resources

10000 Results

View
Selected filters:
State Your Position
Read the Fine Print
Educational Use
Rating
0.0 stars

To navigate, you must know roughly where you stand relative to your designation, so you can head in the right direction. In locations where landmarks are not available to help navigate (in deserts, on seas), objects in the sky are the only reference points. While celestial objects move fairly predictably, and rough longitude is not too difficult to find, it is not a simple matter to determine latitude and precise positions. In this activity, students investigate the uses and advantages of modern GPS for navigation.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
10/14/2015
States of Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as chemical engineers and use LEGO® MINDSTORMS® NXT robotics to record temperatures and learn about the three states of matter. Properties of matter can be measured in various ways, including volume, mass, density and temperature. Students measure the temperature of water in its solid state (ice) as it is melted and then evaporated.

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
States of Matter
Unrestricted Use
CC BY
Rating
0.0 stars

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time. Relate the interaction potential to the forces between molecules.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
John Blanco
Kathy Perkins
Noah Podolefsky
Paul Beale
Sarah McKagan
Trish Loeblein
Wendy Adams
Date Added:
07/18/2011
States of Matter (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time. Relate the interaction potential to the forces between molecules.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
John Blanco
Kathy Perkins
Noah Podolefsky
Patricia Loblein
Paul Beale
Sarah McKagan
Wendy Adams
Date Added:
11/01/2008
States of Matter Basics
Unrestricted Use
CC BY
Rating
0.0 stars

Heat, cool and compress atoms and molecules and watch as they change between solid, liquid and gas phases.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
John Blanco
Kathy Perkins
Noah Podolefsky
Paul Beale
Sarah McKagan
Trish Loeblein
Wendy Adams
Date Added:
11/14/2011
Static Cling
Read the Fine Print
Educational Use
Rating
0.0 stars

This hands-on activity explores the concept of static electricity. Students attract an O-shaped piece of cereal to a charged comb and watch the cereal jump away when it touches the comb. Students also observe Styrofoam pellets pulling towards a charged comb, then leaping back to the table.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise Carlson
Malinda Schaefer Zarske
Monica Maxwell
Date Added:
10/14/2015
Statica
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Statica is de leer van mechanisch evenwicht.

Een lichaam beweegt niet (of is in een éénparige rechtlijnige beweging) als de som van de krachten die op dat lichaam werken nul is. Als ook de som van de momenten die op dat lichaam werken nul is, dan roteert het lichaam ook niet.
De consequentie van deze twee evenwichtsvoorwaarden (som van krachten =0 en som van momenten =0), is dat voor een lichaam waarop een aantal bekende krachten werken de (onbekende) reactiekrachten bepaald kunnen worden .
Dit is van groot belang omdat de grootte van de reactiekrachten de dimensionering en materiaalkeuze van toe te passen componenten bepalen.
Binnen het vak “Statica” wordt in detail ingegaan op de verschillende mechanische belastingen, vaak voorkomende constructies en hoe te rekenen met de diverse belastingen.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Assessment
Lecture
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr. G.C.A.M. Janssen
Date Added:
07/14/2021
Statics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Statics deals with the principles of equilibrium. In this course the principles of forces and moments will be explained as well as principle of equilibrium of forces and moments. This also includes the equilibrium of 2D and 3D structures and trusses. Furthermore the principle of internal forces and moments is addressed as well as the use of the principle of virtual work to calculate both external and internal loads. Finally, the concepts of centre of gravity, centroids and moments of inertia are discussed

Subject:
Physical Science
Physics
Material Type:
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
A.S.J. Suiker
G.N. Saunders
J. Remmers
Date Added:
02/21/2016
Stations of Light
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups rotate through four stations to examine light energy behavior: refraction, magnification, prisms and polarization. They see how a beam of light is refracted (bent) through various transparent mediums. While learning how a magnifying glass works, students see how the orientation of an image changes with the distance of the lens from its focal point. They also discover how a prism works by refracting light and making rainbows. And, students investigate the polar nature of light using sunglasses and polarized light film.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
10/14/2015
Statistical Analysis of Flexible Circuits
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the technology of flexible circuits, some applications and the photolithography fabrication process. They are challenged to determine if the fabrication process results in a change in the circuit dimensions since, as circuits get smaller and smaller (nano-circuits), this could become very problematic. The lesson prepares students to conduct the associated activity in which they perform statistical analysis (using Excel® and GeoGebra) to determine if the circuit dimension sizes before and after fabrication are in fact statistically different. A PowerPoint® presentation and post-quiz are provided. This lesson and its associated activity are suitable for use during the last six weeks of the AP Statistics course; see the topics and timing note for details.

Subject:
Mathematics
Statistics and Probability
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Cunjiang Yu
Miguel R. Ramirez
Minwei Xu
Song Chen
Date Added:
07/07/2021
Statistical Analysis of Methods to Repair Cracked Steel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply pre-requisite statistics knowledge and concepts learned in an associated lesson to a real-world state-of-the-art research problem that asks them to quantitatively analyze the effectiveness of different cracked steel repair methods. As if they are civil engineers, students statistically analyze and compare 12 sets of experimental data from seven research centers around the world using measurements of central tendency, five-number summaries, box-and-whisker plots and bar graphs. The data consists of the results from carbon-fiber-reinforced polymer patched and unpatched cracked steel specimens tested under the same stress conditions. Based on their findings, students determine the most effective cracked steel repair method, create a report, and present their results, conclusions and recommended methods to the class as if they were presenting to the mayor and city council. This activity and its associated lesson are suitable for use during the last six weeks of the AP Statistics course; see the topics and timing note for details.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Botong Zheng
Miguel R. Ramirez
Mina Dawood
Date Added:
07/07/2021
Statistical Analysis of Temperature Sensors
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as if they are engineers aiming to analyze and then improve data collection devices for precision agriculture, students determine how accurate temperature sensors are by comparing them to each other. Teams record soil temperature data during a class period while making changes to the samples to mimic real-world crop conditions—such as the addition of water and heat and the removal of the heat. Groups analyze their collected data by finding the mean, median, mode, and standard deviation. Then, the class combines all the team data points in order to compare data collected from numerous devices and analyze the accuracy of their recording devices by finding the standard deviation of temperature readings at each minute. By averaging the standard deviations of each minute’s temperature reading, students determine the accuracy of their temperature sensors. Students present their findings and conclusions, including making recommendations for temperature sensor improvements.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Keith Lehman
Northern Cass
Trent Kosel
Date Added:
06/28/2017
Statistical Inference For Everyone
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This is a new approach to an introductory statistical inference textbook, motivated by probability theory as logic. It is targeted to the typical Statistics 101 college student, and covers the topics typically covered in the first semester of such a course. It is freely available under the Creative Commons License, and includes a software library in Python for making some of the calculations and visualizations easier.

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Author:
Brian Blais
Date Added:
07/07/2021
Statistical Learning Theory and Applications, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the problem of supervised learning from the perspective of modern statistical learning theory starting with the theory of multivariate function approximation from sparse data. It develops basic tools such as Regularization including Support Vector Machines for regression and classification. It derives generalization bounds using both stability and VC theory. It also discusses topics such as boosting and feature selection and examines applications in several areas: Computer Vision, Computer Graphics, Text Classification and Bioinformatics. The final projects and hands-on applications and exercises are planned, paralleling the rapidly increasing practical uses of the techniques described in the subject.

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Poggio, Tomaso
Date Added:
01/01/2006
Statistical Mechanics II:  Statistical Physics of Fields, Spring 2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A two-semester course on statistical mechanics. Basic principles are examined in 8.333: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, microcanonical, canonical, and grand canonical distributions; applications to lattice vibrations, ideal gas, photon gas. Quantum statistical mechanics; Fermi and Bose systems. Interacting systems: cluster expansions, van der Waal's gas, and mean-field theory. Topics from modern statistical mechanics are explored in 8.334: the hydrodynamic limit and classical field theories. Phase transitions and broken symmetries: universality, correlation functions, and scaling theory. The renormalization approach to collective phenomena. Dynamic critical behavior. Random systems.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kardar, Mehran
Date Added:
01/01/2014
Statistical Mechanics I:  Statistical Mechanics of Particles, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles.

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mehran Kardar
Date Added:
01/01/2013
Statistical Mechanics, Spring 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course discusses the principles and methods of statistical mechanics. Topics covered include classical and quantum statistics, grand ensembles, fluctuations, molecular distribution functions, other concepts in equilibrium statistical mechanics, and topics in thermodynamics and statistical mechanics of irreversible processes.

Subject:
Chemistry
Mathematics
Physical Science
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Jianshu Cao
Date Added:
01/01/2012
Statistical Physics in Biology, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kardar, Mehran
Leonid Mirny
Date Added:
01/01/2005