Updating search results...

Search Resources

1447 Results

View
Selected filters:
  • Physical Science
How Far Does a Lava Flow Go?
Read the Fine Print
Educational Use
Rating
0.0 stars

While learning about volcanoes, magma and lava flows, students learn about the properties of liquid movement, coming to understand viscosity and other factors that increase and decrease liquid flow. They also learn about lava composition and its risk to human settlements.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brittany Enzmann
Date Added:
09/18/2014
How Far Does the Robot Go?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students practice their multiplication skills using robots with wheels built from LEGO® MINDSTORMS® NXT kits. They brainstorm distance travelled by the robots without physically measuring distance and then apply their math skills to correctly calculate the distance and compare their guesses with physical measurements. Through this activity, students estimate parameters other than by physically measuring them, practice multiplication, develop measuring skills, and use their creativity to come up with successful solutions.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elina Mamasheva
Keeshan Williams
Date Added:
09/18/2014
How Full Is Full?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about porosity and permeability and relate these concepts to groundwater flow. They use simple materials to conduct a porosity experiment and use the data to understand how environmental engineers decide on the placement and treatment of a drinking water well.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
How High Can a Super Ball Bounce?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students determine the coefficient of restitution (or the elasticity) for super balls. Working in pairs, they drop balls from a meter height and determine how high they bounce. They measure, record and repeat the process to gather data to calculate average bounce heights and coefficients of elasticity. Then they extrapolate to determine the height the ball would bounce if dropped from much higher heights.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mark Moldwin
Date Added:
09/18/2014
How High is the Sky?
Unrestricted Use
CC BY
Rating
0.0 stars

This activity aims to teach students about the different layers of the atmosphere. It also aims to teach them which part of our atmosphere is considered outer space and what phenomena occur in each layer.

Subject:
Astronomy
Physical Science
Material Type:
Activity/Lab
Interactive
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Rogel Mari Sese, Regulus Space Tech
Date Added:
07/07/2021
How Hot Is Hot? Heat versus Temperature
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The aim of this lesson is to introduce the concepts of heat and temperature, which many students find confusing. During the lesson, students will be asked to explore and discuss situations where even though the same amount of heat is absorbed by several substances, the increase in temperature of the substances is different. This video lesson presents a series of stories relating to heat and temperature, beginning with a visit to a factory where gamat oil is produced. In the video, a man dips his finger into boiling gamat oil yet feels no pain. The scene will draw students’ attention and raise their curiosity about how this is possible. Students will also carry out several experiments to compare and relate the situations where the same amount of heat absorbed by substances will result in different temperatures. By the end of this lesson, students will understand the term “specific heat capacity” and will recognize the difference between a high or low specific heat capacity. They will also understand the term “thermal diffusivity” and how this relates to the topic of the lesson. This lesson offers some authentic learning experiences where students will have the opportunity to relate the concept of heat and temperature to everyday situations. It will take about 50 minutes to complete - however, you may want to divide the lesson into two classes if the activities require more time.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Mohd Zah Ismail, Mohd Suhaimi Mohd Ghazali
Date Added:
07/02/2021
How Hot Is It?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the nature of thermal energy, temperature and how materials store thermal energy. They discuss the difference between conduction, convection and radiation of thermal energy, and complete activities in which they investigate the difference between temperature, thermal energy and the heat capacity of different materials. Students also learn how some engineering requires an understanding of thermal energy.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
How Light Pollution Affects the Stars: Magnitude Readers
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

Light pollution affects the visibility of stars. Building a simple Magnitude Reader, students determine the magnitude of stars and learn about limiting magnitude.

Subject:
Astronomy
Physical Science
Material Type:
Activity/Lab
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Amee Hennig
Date Added:
07/07/2021
How Many Drops?
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson and its associated activity, students conduct a simple test to determine how many drops of each of three liquids can be placed on a penny before spilling over. The three liquids are water, rubbing alcohol, and vegetable oil; because of their different surface tensions, more water can be piled on top of a penny than either of the other two liquids. However, this is not the main point of the activity. Instead, students are asked to come up with an explanation for their observations about the different amounts of liquids a penny can hold. In other words, they are asked to make hypotheses that explain their observations, and because middle school students are not likely to have prior knowledge of the property of surface tension, their hypotheses are not likely to include this idea. Then they are asked to come up with ways to test their hypotheses, although they do not need to actually test their hypotheses. The important points for students to realize are that 1) the tests they devise must fit their hypotheses, and 2) the hypotheses they come up with must be testable in order to be useful.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
How Many Stars Can You See at Night?
Unrestricted Use
CC BY
Rating
0.0 stars

Students will study through investigation the effects of light pollution on night sky observation. They will share their results and suggest improvement within the community.

Subject:
Astronomy
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Jose Goncalves, Nucleo Interativo de Astronomia; Franziska Zaunig, Cardiff University
Date Added:
07/07/2021
How Mosquitoes Can Fly in the Rain
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this lesson, we learn how insects can fly in the rain. The objective is to calculate the impact forces of raindrops on flying mosquitoes. Students will gain experience with using Newton's laws, gathering data from videos and graphs, and most importantly, the utility of making approximations. No calculus will be used in this lesson, but familiarity with torque and force balances is suggested. No calculators will be needed, but students should have pencil and paper to make estimations and, if possible, copies of the graphs provided with the lesson. Between lessons, students are recommended to discuss the assignments with their neighbors.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Lecture Notes
Lesson Plan
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
David Hu
Date Added:
10/29/2012
How Mountains are Formed
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate how mountains are formed. Concepts include the composition and structure of the Earth's tectonic plates and tectonic plate boundaries, with an emphasis on plate convergence as it relates to mountain formation. Students learn that geotechnical engineers design technologies to measure movement of tectonic plates and mountain formation, as well as design to alter the mountain environment to create safe and dependable roadways and tunnels.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Marissa Hagan Forbes
Date Added:
09/18/2014
How Much Heat Will It Hold?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students relate thermal energy to heat capacity by comparing the heat capacities of different materials and graphing the change in temperature over time for a specific material. Students learn why heat capacity is an important property of thermal energy that engineers use in many applications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
How Much Water Do You Use?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students keep track of their own water usage for one week, gaining an understanding of how much water is used for various everyday activities. They relate their own water usages to the average residents of imaginary Thirsty County, and calculate the necessary water capacity of a dam that would provide residential water to the community.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Denise W. Carlson
Kristin Field
Megan Podlogar
Sara Born
Tom Rutkowski
Date Added:
09/18/2014
How Predictable!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students follow weather forecasts to gauge their accuracy and produce a weather report for the class. They develop skills of observation, recording and reporting.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jane Evenson
Malinda Schaefer Zarske
Date Added:
10/14/2015
How To Travel on Earth Without Getting Lost
Unrestricted Use
CC BY
Rating
0.0 stars

With this activity, students use a globe to learn how a position on Earth can be described. They investigate how latitude can be found using the stars. Students learn what latitude and longitude are and how to use them to indicate a position on Earth. They investigate how in some locations on Earth, the direction of the midday sun can change over the year.

Subject:
Physical Geography
Physical Science
Material Type:
Lesson Plan
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Leiden Observatory
Date Added:
01/01/2016
How a Faucet Works
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the underlying engineering principals in the inner workings of a simple household object -- the faucet. Students use the basic concepts of simple machines, force and fluid flow to describe the path of water through a simple faucet. Lastly, they translate this knowledge into thinking about how different designs of faucets also use these same concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Sheridan
Jackie Sullivan
Janet Yowell
Malinda Schaefer Zarske
Tod Sullivan
Date Added:
09/18/2014
How a Hybrid Works
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate different forms of hybrid engines as well as briefly conclude a look at the different forms of potential energy, which concludes the Research and Revise step of the legacy cycle. Students are introduced to basic circuit schematics and apply their understanding of the difference between series and parallel circuits to current research on hybrid cars.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
How to Pull Something Heavy
Read the Fine Print
Educational Use
Rating
0.0 stars

Students measure and analyze forces that act on vehicles pulling heavy objects while moving at a constant speed on a frictional surface. They study how the cars interact with their environments through forces, and discover which parameters in the design of the cars and environments could be altered to improve vehicles' pulling power. This LEGO® MINDSTORMS® based activity is geared towards, but not limited to, physics students.

Subject:
Applied Science
Education
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Irina Igel
Date Added:
09/18/2014