Students apply everything they have learned about light properties and laser technologies …
Students apply everything they have learned about light properties and laser technologies to designing, constructing and presenting laser-based security systems that protect the school's mummified troll. In the associated activity, students "test their mettle" by constructing their security system using a PVC pipe frame, lasers and mirrors. In the lesson, students "go public" by creating informational presentations that explain their systems, and serve as embedded assessment, testing each student's understanding of light properties.
Explores photography as a disciplined way of seeing, investigating landscapes, and expressing …
Explores photography as a disciplined way of seeing, investigating landscapes, and expressing ideas. Readings, observations, and photographs form the basis of discussions on landscape, light, detail, place, poetics, and ways of seeing, among other issues. A rudimentary understanding of photography and access to a camera required.
Explores photography as a disciplined way of seeing, investigating landscapes, and expressing …
Explores photography as a disciplined way of seeing, investigating landscapes, and expressing ideas. Readings, observations, and photographs form the basis of discussions on landscape, light, detail, place, poetics, and ways of seeing, among other issues. A rudimentary understanding of photography and access to a camera required.
Students are provided with an understanding of sound and light waves through …
Students are provided with an understanding of sound and light waves through a "sunken treasure" theme a continuous storyline throughout the lessons. In the first five lessons, students learn about sound, and in the rest of the lessons, they explore light concepts. To begin, students are introduced to the concepts of longitudinal and transverse waves. Then they learn about wavelength and amplitude in transverse waves. In the third lesson, students learn about sound through the introduction of frequency and how it applies to musical sounds. Next, they learn all about echolocation what it is and how engineers use it to "see" things in the dark or deep underwater. The last of the five sound lessons introduces acoustics; students learn how different materials reflect and absorb sound.
Students use the spectrographs from the "Building a Fancy Spectrograph" activity to …
Students use the spectrographs from the "Building a Fancy Spectrograph" activity to gather data about light sources. Using their data, they make comparisons between different light sources and make conjectures about the composition of a mystery light source.
Students learn how using spectrographs helps people understand the composition of light …
Students learn how using spectrographs helps people understand the composition of light sources. Using simple materials including holographic diffraction gratings, students create and customize their own spectrographs just like engineers. They gather data about different light sources, make comparisons between sources and theorize about their compositions. Before building spectrographs, students learn and apply several methods to identify and interpret patterns, specifically different ways of displaying visual spectra. They also use spectral data from the Cassini mission to Saturn and its moon, Titan, to determine the chemical composition of the planet's rings and its moon's atmosphere.
What is a star and what shape is it? Students explore both …
What is a star and what shape is it? Students explore both artistic and scientific representations of stars, learn that stars are like the sun but much further away and make their own star hat.
Student groups rotate through four stations to examine light energy behavior: refraction, …
Student groups rotate through four stations to examine light energy behavior: refraction, magnification, prisms and polarization. They see how a beam of light is refracted (bent) through various transparent mediums. While learning how a magnifying glass works, students see how the orientation of an image changes with the distance of the lens from its focal point. They also discover how a prism works by refracting light and making rainbows. And, students investigate the polar nature of light using sunglasses and polarized light film.
This course explores the theory of self-assembly in surfactant-water (micellar) and surfactant-water-oil …
This course explores the theory of self-assembly in surfactant-water (micellar) and surfactant-water-oil (micro-emulsion) systems. It also introduces the theory of polymer solutions, as well as scattering techniques, light, x-ray, and neutron scattering applied to studies of the structure and dynamics of complex liquids, and modern theory of the liquid state relevant to structured (supramolecular) liquids.
The transition from high school and home to college and a new …
The transition from high school and home to college and a new living environment can be a fascinating and interesting time, made all the more challenging and interesting by being at MIT. More than recording the first semester through a series of snapshots, this freshman seminar will attempt to teach photography as a method of seeing and a tool for better understanding new surroundings. Over the course of the semester, students will develop a body of work through a series of assignments, and then attempt to describe the conditions and emotions of their new environment in a cohesive final presentation.
Street lights of the same type will look brighter when they are …
Street lights of the same type will look brighter when they are close to you, and less bright when they are farther away. The same applies to astronomical objects: a given star will look brighter to a nearby observer than to an observer far away. In both cases, the difference in brightness can be used to deduce the relative distances of suitable objects. Standard candles, objects of constant intrinsic brightness or whose intrinsic brightness can be determined by careful measurements, are a key tool for astronomical distance determination. In this exploration, you will explore standard candles (and also effects that complicate distance measurements) in a simple everyday setting, namely that of street lights, using a digital camera and freely available software.
Student teams conduct an experiment that uses gold nanoparticles as sensors of …
Student teams conduct an experiment that uses gold nanoparticles as sensors of chemical agents to determine which of four sports drinks has the most electrolytes. In this way, students are introduced to gold nanoparticles and their influence on particle or cluster size and fluorescence. They also learn about surface plasmon resonance phenomena and how it applies to gold nanoparticle technologies, which touches on the basics of the electromagnetic radiation spectrum, electrolyte chemistry and nanoscience. Using some basic chemistry and physics principles, students develop a conceptual understanding of how gold nanoparticles function. They also learn of important practical applications in biosensing.
Students are introduced to an engineering challenge in which they are given …
Students are introduced to an engineering challenge in which they are given a job assignment to separate three types of apples. However, they are unable to see the color differences between the apples, and as a result, they must think as engineers to design devices that can be used to help them distinguish the apples from one another. Solving the challenge depends on an understanding of wave properties and the biology of sight. After being introduced to the challenge, students form ideas and brainstorm about what background knowledge is required to solve the challenge. A class discussion produces student ideas that can be grouped into broad subject categories: waves and wave properties, light and the electromagnetic spectrum, and the structure of the eye.
Students learn about the anatomical structure of the human eye and how …
Students learn about the anatomical structure of the human eye and how humans see light, as well as some causes of color blindness. They conduct experiments as an example of research to gather information. During their investigations, they test other students' vision, gathering data and measurements about when objects appear blurry. These topics help students prepare to design solutions to an overarching engineering challenge question.
Students take what they know about materials, optical properties and electrons to …
Students take what they know about materials, optical properties and electrons to the next level—to see how semiconductors can be used to augment light. First, they learn how light-emitting diodes (LEDs) work, which helps them to think critically about a real-world problem they are asked to solve later in the activity as if they are practicing engineers. The challenge: To design an improved LED headlight that lights the roadway without distracting oncoming drivers and passengers with the harsh, bright white light seen in many cars today. Students research the problem via an online video, article and interactive simulation, learning all about quantum dots. Then teams use small LED flashlights and pieces of red, blue, yellow and green acetate to independently experiment to come up with a model that has the potential to improve the measured visual quality of bright white LED light—their solutions to the headlight challenge.
Students use authentic spectral data from the Cassini mission of Saturn and …
Students use authentic spectral data from the Cassini mission of Saturn and Saturn's moon, Titan, gathered by instrumentation developed by engineers. Taking these unknown data, and comparing it with known data, students determine the chemical composition of Saturn's rings and Titan's atmosphere.
Students use the spectrograph from the "Building a Fancy Spectrograph" activity to …
Students use the spectrograph from the "Building a Fancy Spectrograph" activity to gather data about different light sources. Using the data, they make comparisons between the light sources and make conjectures about the composition of these sources.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.