Updating search results...

Search Resources

2097 Results

View
Selected filters:
  • Full Course
Educational Theory and Practice III, Spring 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is the final course in the three-course sequence (11.129, 11.130 and 11.131) that deals with the practicalities of teaching students. Areas of study will include: educational psychology, identification of useful resources that support instruction, learning to use technology in meaningful ways in the classroom, finding more methods of motivating students, implementing differentiated instruction and obtaining a teaching job.

Subject:
Education
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Reen Gibb
Date Added:
01/01/2012
Effective Decision Making: Dealing with Business Complexity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

As an engineer in a leadership position, you will be faced with new responsibilities and tasks. These may include developing a business (unit) strategy and a business plan and being involved in strategic planning. Your success in dealing with these new responsibilities will largely depend on your ability to have a helicopter view of a situation and to make sound decisions. In order to make decsions to move your organization forward, leaders will need to ensure that business goals are achievable and well-balanced while also taking into account the uncertainty of future developments. In a complex business environment, a sound strategy is the result of applying a strategic mindset and systematic approach to decision making.

This course will help you in building and applying an analytical toolkit, including:

scenario analysis
stakeholder analysis
goal analysis
multi-criteria decision analysis
The focus of the course will be on utilizing your analytical skills in a business context, allowing you to unravel complex decision situations to formulate a sound business strategy.

Subject:
Business and Communication
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Els van Daalen
Prof. Alexander de Haan
Prof.dr. Hans de Bruijn
Date Added:
07/14/2021
Eighteenth-Century Literature: Versions of the Self in 18th-C Britain, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An examination of eighteenth-century English writers in their historical context. Authors vary but all address issues of capitalism and class mobility; romantic love and the re-definition of femininity and masculinity; the beginnings of mass culture; colonialism and international travel.

Subject:
Arts and Humanities
Literature
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Jackson, Noel
Date Added:
01/01/2003
Einstein, Oppenheimer, Feynman: Physics in the 20th Century, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the role of physics and physicists during the 20th century, focusing on Einstein, Oppenheimer, and Feynman. Beyond just covering the scientific developments, institutional, cultural, and political contexts will also be examined.

Subject:
Arts and Humanities
History
Physical Science
Physics
World Cultures
World History
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kaiser, David
Date Added:
01/01/2011
Electric Cars: Business
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electric cars are more than a novel means of mobility. They have been recognized as an essential building block of the energy transition. Fulfilling their promise will imply a significant change in the technical, digital and social dimensions of transport and energy infrastructure. If you want to explore the business opportunities this new market offers, then this is the course for you!

This course explains how electric mobility can work for various businesses, including fleet managers, automobile manufacturers and charging infrastructure providers. The experts of TU Delft, together with other knowledge institutes and companies in the Netherlands, will provide insights into and examples of how innovations have disrupted conventional businesses and created new businesses altogether. This will be explained through various concepts and models, including total cost of ownership models, lean mass production, value chain thinking and business integration.

After completing this course, you will be able to create e-mobility business models and develop a new strategy for your company which includes transition to or incorporation of e-mobility.

The course includes video lectures, presentations and exercises, which are all illustrated with real-world case studies from projects that were implemented in the Netherlands.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Ir. F. Rieck
ir. A.E. Hoekstra
ir. R. Steinmetz
ir. R. Wolbertus
prof.dr. G.P. van Wee
Date Added:
07/14/2021
Electric Cars: Introduction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electric vehicles are the future of transportation. Electric mobility has become an essential part of the energy transition, and will imply significant changes for vehicle manufacturers, governments, companies and individuals.

If you are interested in learning about the electric vehicle technology and how it can work for your business or create societal impact, then this is the course for you.

The experts of TU Delft, together with other knowledge institutes and companies in the Netherlands, will prepare you for upcoming developments amid the transition to electric vehicles.

You’ll explore the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure; profitable business models for electric mobility; and effective policies for governmental bodies, which will accelerate the uptake of electric mobility.

The course includes video lectures, presentations and exercises, which are all reinforced with real-world case studies from projects that were implemented in the Netherlands.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Ir. F. Rieck
dr. Pavol Bauer
prof.dr.ir. Margot Weijnen
Date Added:
07/14/2021
Electric Cars: Policy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electric cars are more than a novel means of mobility. They have been recognized as an essential building block of the energy transition. Fulfilling their promise will imply a significant change in the technical, digital and social dimensions of transport and energy infrastructure. As the massive adoption of electric mobility will deeply change our society and our individual routines, government intervention is called for. If you are interested in learning about the roles of government in shaping the transition towards electric mobility and renewable energy systems, then this is the course for you.

In this course, you will explore the promise of electric mobility from different public policy perspectives and different levels of government, and learn how they interact. After completing this course, you will be able to assess a policy plan to support the introduction of electric cars and make a motivated choice between alternative policy instruments. In the final week, the course will be concluded by connecting the different track perspectives.

The course includes video lectures, presentations and exercises, which are all illustrated with real-world case studies from projects that were implemented in the Netherlands.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
prof.dr.ir. Margot Weijnen
prof.dr.ir. Z. Lukszo
Date Added:
07/14/2021
Electric Cars: Technology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electric cars are more than a novel means of mobility. They have been recognized as an essential building block of the energy transition. Fulfilling their promise will imply a significant change in the technical, digital and social dimensions of transport and energy infrastructure. If you are interested in learning about the state-of-the-art technology behind electric cars, then this is the course for you!

This course focuses on the technology behind electric cars. You will explore the working principle of electric vehicles, delve into the key roles played by motors and power electronics, learn about battery technology, EV charging, smart charging and about future trends in the development of electric cars.

The course includes video lectures, presentations and exercises, which are all illustrated with real-world case studies from projects that were implemented in the Netherlands.

This course was co-developed by Dutch Innovation Centre for Electric Road Transport (Dutch-INCERT) and TU Delft and is taught by experts from both the industry and academia, who share their knowledge and insights.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
dr. Pavol Bauer
ir. A.E. Hoekstra
ir. G.R. Chandra Mouli
prof.dr.ir. M. Wagemaker
Date Added:
07/14/2021
Electric Machines, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Treatment of electromechanical transducers, rotating and linear electric machines. Lumped-parameter electromechanics of interaction. Development of device characteristics: energy conversion density, efficiency; and of system interaction characteristics: regulation, stability, controllability, and response. Use of electric machines in drive systems. Problems taken from current research. This course explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing electromechanical design of the major classes of rotating and linear electric machines and have an understanding of the principles of the energy conversion parts of Mechatronics. In addition to design, students learn how to estimate the dynamic parameters of electric machines and understand what the implications of those parameters are on the performance of systems incorporating those machines.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
James Kirtley
Date Added:
01/01/2013
Electrical Engineering and Computer Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This site, created by the Massachusetts Institute of Technology, introduces the electrical engineering and computer science department. Graduates of MIT's electrical engineering and computer science department work in diverse industries and conduct research in a broad range of areas. The site features lecture notes, assignments, solutions, online textbooks, projects, examples and exams.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/18/2011
Electrical, Optical, and Magnetic Properties of Materials, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class discusses the origin of electrical, magnetic and optical properties of materials, with a focus on the acquisition of quantum mechanical tools. It begins with an analysis of the properties of materials, presentation of the postulates of quantum mechanics, and close examination of the hydrogen atom, simple molecules and bonds, and the behavior of electrons in solids and energy bands. Introducing the variation principle as a method for the calculation of wavefunctions, the course continues with investigation of how and why materials respond to different electrical, magnetic and electromagnetic fields and probes and study of the conductivity, dielectric function, and magnetic permeability in metals, semiconductors, and insulators. A survey of common devices such as transistors, magnetic storage media, optical fibers concludes the semester. Note: The Magnetics unit was taught by co-instructor David Paul; that material is not available at this time.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Marzari, Nicola
Paul, David
Date Added:
01/01/2007
Electrical machines and drives
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course gives an overview of different types of electrical machines and drives. Different types of mechanica loads are discussed. Maxwell's equations are applied to magnetic circuits including permanent magnets. DC machines, induction machines, synchronous machines, switched reluctance machines, brushless DC machines and single-phase machines are discussed with the power electronic converters used to drive them.Study Goals After following this course the students should have an overview over the different types of electrical machines and the way they are used in drive systems and they should be able to derive equations describing the steady-state performance of these machines

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
H. Polinder
Date Added:
02/08/2016
Electricity and Magnetism, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
John Belcher
Date Added:
05/17/2004
Electrochemical Energy Systems, Spring 2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces principles and mathematical models of electrochemical energy conversion and storage. Students study equivalent circuits, thermodynamics, reaction kinetics, transport phenomena, electrostatics, porous media, and phase transformations. In addition, this course includes applications to batteries, fuel cells, supercapacitors, and electrokinetics.

Subject:
Applied Science
Career and Technical Education
Chemistry
Electronic Technology
Engineering
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bazant, Martin
Date Added:
01/01/2011
Electrochemical Processing of Materials, Spring 2001
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Thermodynamic and transport properties of aqueous and nonaqueous electrolytes. The electrode/electrolyte interface. Kinetics of electrode processes. Electro-chemical characterization: d.c. techniques (controlled potential, controlled current), a.c. techniques (voltametry and impedance spectroscopy). Applications: electrowinning, electrorefining, electroplating, and electrosynthesis, as well as electrochemical power sources (batteries and fuel cells). This course covers a variety of topics concerning superconducting magnets, including thermodynamic and transport properties of aqueous and nonaqueous electrolytes, the electrode/electrolyte interface, and the kinetics of electrode processes. It also covers electrochemical characterization with regards to d.c. techniques (controlled potential, controlled current) and a.c. techniques (voltametry and impedance spectroscopy). Applications of the following will also be discussed: electrowinning, electrorefining, electroplating, and electrosynthesis, as well as electrochemical power sources (batteries and fuel cells).

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sadoway, Donald
Date Added:
01/01/2001
Electromagnetic Energy: From Motors to Lasers, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course discusses applications of electromagnetic and equivalent quantum mechanical principles to classical and modern devices. It covers energy conversion and power flow in both macroscopic and quantum-scale electrical and electromechanical systems, including electric motors and generators, electric circuit elements, quantum tunneling structures and instruments. It studies photons as waves and particles and their interaction with matter in optoelectronic devices, including solar cells, displays, and lasers. The instructors would like to thank Scott Bradley, David Friend, Ta-Ming Shih, and Yasuhiro Shirasaki for helping to develop the course, and Kyle Hounsell, Ethan Koether, and Dmitri Megretski for their work preparing the lecture notes for OCW publication.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Jeffrey H. Lang
Rajeev Ram
Steven Leeb
Vladimir Bulovic
Yu Gu
Date Added:
01/01/2011
Electromagnetic Field Theory: A Problem Solving Approach, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This text is an introductory treatment on the junior level for a two-semester electrical engineering course starting from the Coulomb-Lorentz force law on a point charge. The theory is extended by the continuous superposition of solutions from previously developed simpler problems leading to the general integral and differential field laws. Often the same problem is solved by different methods so that the advantages and limitations of each approach becomes clear. Sample problems and their solutions are presented for each new concept with great emphasis placed on classical models of physical phenomena such as polarization, conduction, and magnetization. A large variety of related problems that reinforce the text material are included at the end of each chapter for exercise and homework.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zahn, Markus
Date Added:
01/01/2008
Electromagnetic Fields, Forces, and Motion, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena. Acknowledgments The instructor would like to thank Thomas Larsen and Matthew Pegler for transcribing into LaTeX the homework problems, homework solutions, and exam solutions.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zahn, Markus
Date Added:
01/01/2009
Electromagnetic Fields and Energy, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Published in 1989 by Prentice-Hall, this book is a useful resource for educators and self-learners alike. The text is aimed at those who have seen Maxwell's equations in integral and differential form and who have been exposed to some integral theorems and differential operators. A hypertext version of this textbook can be found here. An accompanying set of video demonstrations is available below. These video demonstrations convey electromagnetism concepts. The demonstrations are related to topics covered in the textbook. They were prepared by Markus Zahn, James R. Melcher, and Manuel L. Silva and were produced by the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology. The purpose of these demonstrations is to make mathematical analysis of electromagnetism take on physical meaning. Based on relatively simple configurations and arrangements of equipment, they make a direct connection between what has been analytically derived and what is observed. They permit the student to observe physically what has been described symbolically. Often presented with a plot of theoretical predictions that are compared to measured data, these demonstrations give the opportunity to test the range of validity of the theory and present a quantitative approach to dealing with the physical world. The short form of these videos contains the demonstrations only. The long form also presents theory, diagrams, and calculations in support of the demonstrations. These videos are used in the courses 6.013J/ESD.013J and 6.641. Technical Requirements:Special software is required to use some of the files in this course: .mp4, .rm.

Subject:
Applied Science
Computer Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Silva, Manuel L.
Zahn, Markus
Date Added:
01/01/2008
Electromagnetic Interactions, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic fields. Charged particle motion in those fields. Particle acceleration and focussing. Collisons with charged particles and atoms. Electromagnetic waves, wave emission by accelerated particles, Bremsstrahlung. Compton scattering. Photoionization. Elementary applications to ranging, shielding, imaging, and radiation effects. This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Freidberg, Jeffrey
Date Added:
01/01/2005