Updating search results...

Search Resources

1727 Results

View
Selected filters:
  • TeachEngineering
Energy Systems
Read the Fine Print
Educational Use
Rating
0.0 stars

Posters are provided for several different energy conversion systems. Students are provided with cards that give the name and a description of each of the components in an energy system. They match these with the figures on the diagram. Since the groups look at different systems, they also describe their results to the class to share their knowledge.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Energy Transfer in Musical Instruments
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers concepts of energy and energy transfer utilizing energy transfer in musical instruments as an example. More specifically, the lesson explains the two different ways in which energy can be transferred between a system and its environment. The law of conservation of energy will also be taught. Example systems will be presented to students (two cars on a track and a tennis ball falling to the ground) and students will be asked to make predictions and explain the energy transfer mechanisms. The engineering focus comes in clearly in the associated activity when students are asked to apply the fundamental concepts of the lesson to design a musical instrument. The systems analyzed in the lesson should help a great deal in terms of discussing how to apply conservation of energy and energy transfer to make things.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Adam Kempton
Date Added:
09/18/2014
Energy and the Pogo Stick
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity utilizes hands on learning with the conservation of energy with the inclusion of elastic potential energy. Students use pogo sticks to experience the elastic potential energy and its conversion to gravitational potential energy.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
Energy in Our Lives Carousel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover that they already know a lot about energy through their own life experiences. As active consumers of various forms of energy, they are aware of energy purchases for electricity, home heating/cooling and transportation. Through the pedagogical technique of a "carousel," all students become involved in brainstorming and contributing ideas. The goal is to introduce students to key terms and issues associated with energy, as a prerequisite for the rest of the unit.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters b
Susan Powers
Date Added:
09/18/2014
The Energy of Light
Read the Fine Print
Educational Use
Rating
0.0 stars

In this introduction to light energy, students learn about reflection and refraction as they learn that light travels in wave form. Through hands-on activities, they see how prisms, magnifying glasses and polarized lenses work. They also gain an understanding of the colors of the rainbow as the visible spectrum, each color corresponding to a different wavelength.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Cooper
Mandek Richardson
Patricio Rocha
Tapas K. Das
Date Added:
09/18/2014
The Energy of Music
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to sound energy concepts and how engineers use sound energy. Through hands-on activities and demonstrations, students examine how we know sound exists by listening to and seeing sound waves. They learn to describe sound in terms of its pitch, volume and frequency. They explore how sound waves move through liquids, solids and gases. They also identify the different pitches and frequencies, and create high- and low-pitch sound waves.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Energy on a Roller Coaster
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity utilizes hands-on learning with the conservation of energy and the interaction of friction. Students use a roller coaster track and collect position data. The students then calculate velocity, and energy data. After the lab, students relate the conversion of potential and kinetic energy to the conversion of energy used in a hybrid car.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
Engineer a Coin Sorter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the engineering design process and how it is used to engineer products for everyday use. Students individually brainstorm solutions for sorting coins and draw at least two design ideas. They work in small groups to combine ideas and build a coin sorter using common construction materials such as cardboard, tape, straws and fabric. Students test their coin sorters, make revisions and suggest ways to improve their designs. By designing, building, testing and improving coin sorters, students come to understand how the engineering design process is used to engineer products that benefit society.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Megan Schroeder
Stephanie Rivale
Date Added:
09/18/2014
Engineer a Sneaker
Read the Fine Print
Educational Use
Rating
0.0 stars

The goal is for students to understand the basics of engineering that go into the design of a sneaker. The bottom or sole of a sneaker provides support, cushioning, and traction. In addition the sole is flexible and can have some fashion based functions such as cool colors and added height. The sneaker is a well-engineered product, utilizing a variety of materials to create a highly functional, useful shoe. This unit focuses on having the students select specific design requirements, such as good traction or lots of cushioning, and then select from a variety of materials to build a model shoe with the same design criteria.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/26/2008
Engineering Bones
Read the Fine Print
Educational Use
Rating
0.0 stars

Students extend their knowledge of the skeletal system to biomedical engineering design, specifically the concept of artificial limbs. Students relate the skeleton as a structural system, focusing on the leg as structural necessity. They learn about the design considerations involved in the creation of artificial limbs, including materials and sensors.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Engineering Brainstorming
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as an engineering consulting firm with the task to design and sell their idea for a new vehicle power system. During the brainstorming activity (Generate Ideas), students determine and comprehend what type of information is important to learn in order to accomplish the task. Then they watch several video clips as part of the Multiple Perspectives phase. The new input contributes to changing and focusing their original ideas.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
Engineering Derby: Tool Ingenuity
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams are challenged to navigate a table tennis ball through a timed obstacle course using only the provided unconventional “tools.” Teams act as engineers by working through the steps of the engineering design process to complete the overall task with each group member responsible to accomplish one of the obstacle course challenges. Inspired by the engineers who helped the Apollo 13 astronauts through critical problems in space, students must be innovative with the provided supplies to use them as tools to move the ball through the obstacles as swiftly as possible. Groups are encouraged to communicate with each other to share vital information. The course and tool choices are easily customizable for varied age groups and/or difficulty levels. Pre/post assessment handouts, competition rules and judging rubric are provided.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Andrew Palermo
Date Added:
07/07/2021
Engineering Ethics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze an assortment of popular inventions to determine whom they are intended to benefit, who has access to them, who might be harmed by them, and who is profiting by them. Then they re-imagine the devices in a way that they believe would do more good for humanity. During the first 90-minute class period, they evaluate and discuss designs in small groups and as a class, examining their decision-making criteria. Collectively, they decide upon a definition of "ethical" that they use going forward. During the second period, students apply their new point-of-view to redesign popular inventions (on paper) and persuasively present them to the class, explaining how they meet the class standards for ethical designs. Two PowerPoint® presentations, a worksheet and grading rubric are provided.

Subject:
Career and Technical Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Mejia
Amy A. Wilson
Christina Sias
Date Added:
07/07/2021
Engineering Nature: DNA Visualization and Manipulation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to genetic techniques such as DNA electrophoresis and imaging technologies used for molecular and DNA structure visualization. In the field of molecular biology and genetics, biomedical engineering plays an increasing role in the development of new medical treatments and discoveries. Engineering applications of nanotechnology such as lab-on-a-chip and deoxyribonucleic acid (DNA) microarrays are used to study the human genome and decode the complex interactions involved in genetic processes.

Subject:
Applied Science
Engineering
Genetics
Life Science
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Engineering Out of Harry Situations: The Science Behind Harry Potter
Read the Fine Print
Educational Use
Rating
0.0 stars

Under the "The Science Behind Harry Potter" theme, a succession of diverse complex scientific topics are presented to students through direct immersive interaction. Student interest is piqued by the incorporation of popular culture into the classroom via a series of interactive, hands-on Harry Potter/movie-themed lessons and activities. They learn about the basics of acid/base chemistry (invisible ink), genetics and trait prediction (parseltongue trait in families), and force and projectile motion (motion of the thrown remembrall). In each lesson and activity, students are also made aware of the engineering connections to these fields of scientific study.

Subject:
Applied Science
Chemistry
Engineering
Genetics
Life Science
Mathematics
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Engineering Polymers from Potatoes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to polymer science and take on the role of chemical engineers to create and test a plastic made from starch. After testing their potato-based plastic, students design a product that takes advantage of the polymer’s unique properties. At the end of the engineering design process, students present their product in a development “pitch” that communicates their idea to potential investors.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Rebecca Hooper
Robin Lewis
Date Added:
02/12/2019
Engineering Pop-Ups
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about applied forces as they create pop-up-books the art of paper engineering. They also learn the basic steps of the engineering design process.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Engineering Safety
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to safety protocols by evaluating unsafe situations, sharing their ideas with their peers, developing a list of recommended safety protocols as a class, and finally, by comparing the class list to a standard list of safety rules. This activity seeks to demonstrate the importance of safety engineering and illustrate how it helps to prevent injuries and save lives. A PowerPoint® presentation, pre/post quiz and student handout are provided.

Subject:
Career and Technical Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Amy Wilson-Lopez
Christina Sias
Date Added:
07/07/2021
Engineering Self-Cleaning Hydrophobic Surfaces
Read the Fine Print
Educational Use
Rating
0.0 stars

This biomimetic engineering challenge introduces students to the fields of nanotechnology and biomimicry. Students explore how to modify surfaces such as wood or cotton fabric at the nanoscale. They create specialized materials with features such as waterproofing and stain resistance. The challenge starts with student teams identifying an intended user and developing scenarios for using their developed material. Students then design and create their specialized material using everyday materials. Each students test each design under specific testing constraints to determine the hydrophobicity of the material. After testing, teams iterate ways to improve their self-cleaning superhydrophobic modification technique for their design. After iterating and testing their designs, students present their final product and results to the class.

Subject:
Biology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Krystle Dunn
Qilin Li
Seth Pedersen
Date Added:
08/29/2019