Updating search results...

Search Resources

80 Results

View
Selected filters:
  • measurement
Let's Get Breezy!
Read the Fine Print
Educational Use
Rating
0.0 stars

With the assistance of a few teacher demonstrations (online animation, using a radiometer and rubbing hands), students review the concept of heat transfer through convection, conduction and radiation. Then they apply an understanding of these ideas as they use wireless temperature probes to investigate the heating capacity of different materials sand and water under heat lamps (or outside in full sunshine). The experiment models how radiant energy drives convection within the atmosphere and oceans, thus producing winds and weather conditions, while giving students the hands-on opportunity to understand the value of remote-sensing capabilities designed by engineers. Students collect and record temperature data on how fast sand and water heat and cool. Then they create multi-line graphs to display and compare their data, and discuss the need for efficient and reliable engineer-designed tools like wireless sensors in real-world applications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Constance Garza
Mounir Ben Ghalia
Date Added:
10/14/2015
Linking Sources and Pollutants
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use next-generation air quality monitors to measure gas-phase pollutants in the classroom. They apply the knowledge they gained during the associated lesson—an understanding of the connection between air pollutants and their possible sources. Student teams choose three potential pollutant sources and predict how the monitor’s sensors will respond. Then they evaluate whether or not their predictions were correct, and provide possible explanations for any inaccuracies. This activity serves as a simple introduction to the low-cost air quality monitoring technology that students use throughout the associated activities that follow. Three student handouts are provided.

Subject:
Career and Technical Education
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Ashley Collier
Ben Graves
Daniel Knight
Drew Meyers
Eric Ambos
Eric Lee
Erik Hotaling
Hanadi Adel Salamah
Joanna Gordon
Katya Hafich
Michael Hannigan
Nicholas VanderKolk
Olivia Cecil
Victoria Danner
Date Added:
07/07/2021
Making a Sundial
Unrestricted Use
CC BY
Rating
0.0 stars

In this activity, students discuss the notion of time and how time can be measured. They learn that a long time ago, people used different tools to measure time. Students build and use a sundial and discover that a long time ago, it was much more difficult to accurately tell the time than it is today.

Subject:
Applied Science
Physical Science
Material Type:
Activity/Lab
Provider:
International Astronomical Union
Provider Set:
astroEDU
Date Added:
01/01/2016
Masses & Springs
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
The Mortenson Family Foundation
Wendy Adams
Date Added:
04/26/2006
Masses & Springs (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
Wendy Adams
Date Added:
08/02/2009
Measuring Distances in the Milky Way
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main aim of this lesson is to show students that distances may be determined without a meter stick—a concept fundamental to such measurements in astronomy. It introduces students to the main concepts behind the first rung of what astronomers call the distance ladder. The four main learning objectives are the following: 1) Explore, in practice, a means of measuring distances without what we most often consider the “direct” means: a meter stick; 2) Understand the limits of a method through the exploration of uncertainties; 3) Understand in the particular method used, the relationship between baseline and the accuracy of the measurement; and 4) Understand the astronomical applications and implications of the method and its limits. Students should be able to use trigonometry and know the relation between trigonometric functions and the triangle. A knowledge of derivatives is also needed to obtain the expression for the uncertainty on the distance measured. Students will need cardboard cut into disks. The number of disks is essentially equal to half the students in the class. Two straight drink straws and one pin per disk. Students will also need a protractor. The lesson should not take more than 50 minutes to complete if the students have the mathematical ability mentioned above. This lesson is complimentary to the BLOSSOMS lesson, "The Parallax Activity." The two lessons could be used sequentially - this one being more advanced - or they could be used separately.

Subject:
Astronomy
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
The Pythagorean Theorem: Geometry’s Most Elegant Theorem
Date Added:
07/02/2021
Measuring Distance with Sound Waves
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about sound waves and use them to measure distances between objects. They explore how engineers incorporate ultrasound waves into medical sonogram devices and ocean sonar equipment. Students learn about properties, sources and applications of three types of sound waves, known as the infra-, audible- and ultra-sound frequency ranges. They use ultrasound waves to measure distances and understand how ultrasonic sensors are engineered.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Irina Igel
Date Added:
09/18/2014
Mmm Cupcakes: What's Their Life Cycle Impact?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about life-cycle assessment and how engineers use this technique to determine the environmental impact of everyday products and processes. As they examine what’s involved in making and consuming cupcakes, a snack enjoyed by millions of people every year, students learn about the production, use and disposal phases of an object’s life cycle. With the class organized into six teams, students calculate data for each phase of a cupcake’s life cycle—wet ingredients, dry ingredients, baking materials, oven baking, frosting, liner disposal—and calculate energy usage and greenhouse gases emitted from making one cupcake. They use ratios and fractions, and compare options for some of the life-cycle stages, such as different paper wrapper endings (disposal to landfills or composting) in order to make a life-cycle plan with a lower environmental impact. This activity opens students’ eyes to see the energy use in the cradle-to-grave lives of everyday products. Pre/post-quizzes, worksheets, activity cards, Excel® workbook and visual aids are provided.

Subject:
Applied Science
Engineering
Mathematics
Numbers and Operations
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Sara Pace
Date Added:
06/07/2017
Name That Metal!
Read the Fine Print
Educational Use
Rating
0.0 stars

Given an assortment of unknown metals to identify, student pairs consider what unique intrinsic (aka intensive) metal properties (such as density, viscosity, boiling or melting point) could be tested. For the provided activity materials (copper, aluminum, zinc, iron or brass), density is the only property that can be measured so groups experimentally determine the density of the "mystery" metal objects. They devise an experimental procedure to measure mass and volume in order to calculate density. They calculate average density of all the pieces (also via the graphing method if computer tools area available). Then students analyze their own data compared to class data and perform error analysis. Through this inquiry-based activity, students design their own experiments, thus experiencing scientific investigation and experimentation first hand. A provided PowerPoint(TM) file and information sheet helps to introduce the five metals, including information on their history, properties and uses.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ann McCabe
Azim Laiwalla
Carleigh Samson
Dua Naim Chaker
Karen McCleary
Date Added:
10/14/2015
Natural Resources Biometrics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Natural Resources Biometrics begins with a review of descriptive statistics, estimation, and hypothesis testing. The following chapters cover one- and two-way analysis of variance (ANOVA), including multiple comparison methods and interaction assessment, with a strong emphasis on application and interpretation. Simple and multiple linear regressions in a natural resource setting are covered in the next chapters, focusing on correlation, model fitting, residual analysis, and confidence and prediction intervals. The final chapters cover growth and yield models, volume and biomass equations, site index curves, competition indices, importance values, and measures of species diversity, association, and community similarity.

Subject:
Mathematics
Statistics and Probability
Material Type:
Textbook
Provider:
State University of New York
Provider Set:
Milne Open Textbooks
Author:
Diane Kiernan
Date Added:
01/16/2014
Nidy-Gridy
Read the Fine Print
Educational Use
Rating
0.0 stars

Normally we find things using landmark navigation. When you move to a new place, it may take you awhile to explore the new streets and buildings, but eventually you recognize enough landmarks and remember where they are in relation to each other. However, another accurate method for locating places and things is using grids and coordinates. In this activity, students will come up with their own system of a grid and coordinates for their classroom and understand why it is important to have one common method of map-making.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
10/14/2015
On-Track Unit Conversion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use three tracks marked on the floor, one in yards, one in feet and one in inches. As they start and stop a robot specific distances on a "runway," they can easily determine the equivalent measurements in other units by looking at the nearby tracks. With this visual and physical representation of the magnitude of the units of feet, yard and inches, students gain an understanding of what is meant by "unit conversion." They also gain a familiarity with different common units of measurement. They use multiplication and division to verify their physical estimated unit conversions. Students also learn about how common and helpful it is to convert from one unit to another in everyday situations and for engineering purposes. This activity helps students make the abstract concept of unit conversion real so they develop mental models of the magnitude of units instead of applying memorized conversion factors by rote.

Subject:
Applied Science
Education
Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
Panoptes and the Bionic Eye
Read the Fine Print
Educational Use
Rating
0.0 stars

Vision is the primary sense of many animals and much is known about how vision is processed in the mammalian nervous system. One distinct property of the primary visual cortex is a highly organized pattern of sensitivity to location and orientation of objects in the visual field. But how did we learn this? An important tool is the ability to design experiments to map out the structure and response of a system such as vision. In this activity, students learn about the visual system and then conduct a model experiment to map the visual field response of a Panoptes robot. (In Greek mythology, Argus Panoptes was the "all-seeing" watchman giant with 100 eyes.) A simple activity modification enables a true black box experiment, in which students do not directly observe how the visual system is configured, and must match the input to the output in order to reconstruct the unseen system inside the box.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Gisselle Cunningham
Michael Trumpis
Shingi Middelmann
Date Added:
10/14/2015
PhET Simulation: Estimation
Unrestricted Use
CC BY
Rating
0.0 stars

This interactive Flash animation allows students to explore size estimation in one, two and three dimensions. Multiple levels of difficulty allow for progressive skill improvement. In the simplest level, users estimate the number of small line segments that can fit into a larger line segment. Intermediate and advanced levels offer feature games that explore area of rectangles and circles, and volume of spheres and cubes. Related lesson plans and student guides are available for middle school and high school classroom instruction. Editor's Note: When the linear dimensions of an object change by some factor, its area and volume change disproportionately: area in proportion to the square of the factor and volume in proportion to its cube. This concept is the subject of entrenched misconception among many adults. This game-like simulation allows kids to use spatial reasoning, rather than formulas, to construct geometric sense of area and volume. This is part of a larger collection developed by the Physics Education Technology project (PhET).

Subject:
Education
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Interactive
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Mindy Gratny
Date Added:
01/22/2006
Population Density: How Much Space Do You Have?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about population density within environments and ecosystems. They determine the density of a population and think about why population density and distribution information is useful to engineers for city planning and design as well as for resource allocation.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Precalculus
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Prior to 1990, the performance of a student in precalculus at the University of Washington was not a predictor of success in calculus. For this reason, the mathematics department set out to create a new course with a specific set of goals in mind:

A review of the essential mathematics needed to succeed in calculus.
An emphasis on problem solving, the idea being to gain both experience and confidence in working with a particular set of mathematical tools.
This text was created to achieve these goals and the 2004-05 academic year marks the eleventh year in which it has been used. Several thousand students have successfully passed through the course.

This book is full of worked out examples. We use the the notation “Soluion.” to indicate where the reasoning for a problem begins; the symbol ?? is used to indicate the end of the solution to a problem. There is a Table of Contents that is useful in helping you find a topic treated earlier in the course. It is also a good rough outline when it comes time to study for the final examination. The book also includes an index at the end. Finally, there is an appendix at the end of the text with ”answers” to most of the problems in the text. It should be emphasized these are ”answers” as opposed to ”solutions”. Any homework problems you may be asked to turn in will require you include all your work; in other words, a detailed solution. Simply writing down the answer from the back of the text would never be sufficient; the answers are intended to be a guide to help insure you are on the right track.

Subject:
Calculus
Mathematics
Material Type:
Textbook
Author:
David H. Collingwood
K. David Prince
Matthew M. Conroy
Date Added:
07/07/2021
Prekindergarten Mathematics Module 4: Comparison of Length, Weight, Capacity, and Numbers to 5
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In the first half of this module, students identify measurable attributes of objects in terms of length, weight, and capacity.  Students learn words such as small, big, short, tall, empty, full, heavy, and light so that they will have the vocabulary needed to describe objects (PK.MD.1).  The comparison of length, weight, and capacity naturally leads to discussions about quantity and number.  In the second half, measurement is connected to quantity as students reason if there are enough, more than, less than, or the same number of objects in a set using matching and counting strategies (PK.CC.5).  Comparing concrete sets leads to comparing quantities and abstract numbers.  Children will also focus on identifying first and last in quantities up to 5 and 10 in different configurations (PK.CC.6).

**NOTE: The New York State Education Department shut down the EngageNY website in 2022. In order to maintain educators' access, nearly all resources have been uploaded to archive.org and the resource links above have been updated to reflect their new locations.**

Subject:
Mathematics
Material Type:
Module
Provider:
New York State Education Department
Provider Set:
EngageNY
Date Added:
12/04/2014
Putting Robots to Work with Force & Friction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the concept of pushing, as well as the relationship between force and mass. Students practice measurement skills using pan scales and rulers to make predictions about mass and distance. A LEGO MINDSTORMS(TM) NXT robot is used to test their hypotheses. By the end of the activity, students have a better understanding of robotics, mass and friction and the concept of predicting.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Donna Johnson
Janet Yowell
Joseph Frezzo
Raymond Le Grand
Robyn Tommaselli
Tanjia Chowdhury
Date Added:
09/18/2014
Quantifying the Energy Associated with Everyday Things and Events
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The topic of this video is energy in general, and specifically the ways we can quantify it. In order to make the concepts accessible to a broad audience, this video focuses on everyday things and events. How is it that energy plays a part in a child riding a scooter? How is the energy we consume in playing related to the energy on the food we eat? This video poses these questions to the class and challenges them to put a list of five such items into an ordering from most energy to least.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Daniel D. Frey
Date Added:
07/02/2021
Quantitative Reasoning & Statistical Methods for Planners I, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course develops logical, empirically based arguments using statistical techniques and analytic methods. Elementary statistics, probability, and other types of quantitative reasoning useful for description, estimation, comparison, and explanation are covered. Emphasis is on the use and limitations of analytical techniques in planning practice.

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Glenn, Ezra Haber
Date Added:
01/01/2009