Updating search results...

Search Resources

32 Results

View
Selected filters:
  • cells
Methods for Protein Purification
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This Protein Purification video lesson is intended to give students some insight into the process and tools that scientists and engineers use to explore proteins. It is designed to extend the knowledge of students who are already somewhat sophisticated and who have a good understanding of basic biology. The question that motivates this lesson is, ''what makes two cell types different?'' and this question is posed in several ways. Such scientific reasoning raises the experimental question: how could you study just a subset of specialized proteins that distinguish one cell type from another? Two techniques useful in this regard are considered in the lesson.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Natalie Kuldell, PhD
Date Added:
07/02/2021
Monumental Movements
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn some of the implications of 3D printing in the biomedical field. Unlike 3D printers used in a classroom or by consumers, which use a plastic filament to produce a product, 3D printing for medical purposes is often with real living cells. In this lesson, students gain an understanding of how 3D printing is changing lives for the better through a presentation and group discussion. In the corresponding activity, they have the opportunity to participate in a hands-on simulation of a real-world 3D printing task.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Amanda Spotz
Date Added:
07/03/2019
Nanomechanics of Materials and Biomaterials, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microscopy, elasticity of single macromolecular chains, intermolecular interactions in polymers, dynamic force spectroscopy, biomolecular bond strength measurements, and molecular motors.

Subject:
Biology
Chemistry
Genetics
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ortiz, Christine
Date Added:
01/01/2007
Neuron
Unrestricted Use
CC BY
Rating
0.0 stars

Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they move across the neuron membrane.

Subject:
Biology
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
John Blanco
Katherine Perkins
Noah Podolefsky
Wendy Adams
Date Added:
10/01/2010
Photosynthesis: Life's Primary Energy Source
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers the process of photosynthesis and the related plant cell functions of transpiration and cellular respiration. Students will learn how engineers can use the natural process of photosynthesis as an exemplary model of a complex yet efficient process for converting solar energy to chemical energy or distributing water throughout a system.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Janet Yowell
Karen King
Date Added:
09/18/2014
Principles of Radiation Interactions, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Explores the interaction of radiation with matter at the microscopic level from both the theoretical and experimental viewpoints. Emphasis on radiation effects in biological systems. Topics include energy deposition by various types of radiation, including the creation and behavior of secondary radiations; the effects of radiation on cells and on DNA; and experimental techniques used to measure these radiation effects. Cavity theory, microdosimetry and methods used to simulate radiation track structure are reviewed. Examples of current literature used to relate theory, modeling, and experimental methods. Requires a term paper and presentation. The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the different types of radiation have very different biological effects. Topics will include: the effects of radiation on biological systems including DNA damage; in vitro cell survival models; and in vivo mammalian systems. The course covers radiation therapy, radiation syndromes in humans and carcinogenesis. Environmental radiation sources on earth and in space, and aspects of radiation protection are also discussed. Examples from the current literature will be used to supplement lecture material.

Subject:
Applied Science
Education
Educational Technology
Environmental Science
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Coderre, Jeffrey A.
Date Added:
01/01/2004
Quantitative Physiology: Cells and Tissues, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Principles of mass transport and electrical signal generation for biological membranes, cells, and tissues. Mass transport through membranes: diffusion, osmosis, chemically mediated, and active transport. Electric properties of cells: ion transport; equilibrium, resting, and action potentials. Kinetic and molecular properties of single voltage-gated ion channels. Laboratory and computer exercises illustrate the concepts. For juniors and seniors. Students engage in extensive written and oral communication exercises.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Freeman, Dennis
Date Added:
01/01/2004
Selectively Permeable Membranes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn that engineers develop different polymers to serve various functions and are introduced to selectively permeable membranes. In a warm-up activity, they construct models of selectively permeable membranes using common household materials, and are reminded about simple diffusion and passive transport. In the main activity, student pairs test and compare the selective permeability of everyday polymer materials engineered for food storage (including plastic grocery bags, zipper sandwich bags, and plastic wrap) with various in-solution molecules (iodine, corn starch, food coloring, marker dye), assess how the polymer’s permeability relates to its function/purpose, and compare that to the permeability of dialysis tubing (which simulates a cell membrane).

Subject:
Biology
Career and Technical Education
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Eric Shows
Date Added:
07/07/2021
Sudsy Cells
Read the Fine Print
Educational Use
Rating
0.0 stars

Students culture cells in order to find out which type of surfactant (in this case, soap) is best at removing bacteria. Groups culture cells from unwashed hands and add regular bar soap, regular liquid soap, anti-bacterial soap, dishwasher soap, and hand sanitizer to the cultures. The cultures are allowed to grow for two days and then the students assess which type of soap design did the best job of removing bacteria cells from unwashed hands. Students extend their knowledge of engineering and surfactants for different environmental applications.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
10/14/2015
Unfolding the Mystery of Life, Biology Lab Manual for Non-Science Majors
Unrestricted Use
CC BY
Rating
0.0 stars

This laboratory manual is intended for use in a biology laboratory course taken by non-science majors, pre-biology, and pre-allied health majors.

Laboratory exercises provide students with experience in basic laboratory skills, gathering and organizing data, measuring and calculating, hypothesis testing, analysis of data, writing, and laboratory safety. The skill sets are designed to promote the development of critical thought and analysis. Students work with living and preserved specimens, and laboratory reagents and equipment.

Subject:
Biology
Life Science
Material Type:
Textbook
Author:
Ellen Genovesi
Laura Blinderman
Patrick Natale
Date Added:
07/07/2021