Updating search results...

Search Resources

2097 Results

View
Selected filters:
  • Full Course
Quantifying Uncertainty, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The ability to quantify the uncertainty in our models of nature is fundamental to many inference problems in Science and Engineering. In this course, we study advanced methods to represent, sample, update and propagate uncertainty. This is a "hands on" course: Methodology will be coupled with applications. The course will include lectures, invited talks, discussions, reviews and projects and will meet once a week to discuss a method and its applications.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sai Ravela
Date Added:
01/01/2012
Quantitative Genomics, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Subject assesses the relationships between sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive functional-genomics analyses. Topics include: algorithmic, statistical, database, and simulation approaches; and practical applications to biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations critically assessed. Problem sets and project emphasize creative, hands-on analyses using these concepts.

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Berwick, Robert
Kho, Alvin
Kohane, Isaac
Mirny, Leonid
Date Added:
01/01/2005
Quantitative Physiology: Cells and Tissues, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Principles of mass transport and electrical signal generation for biological membranes, cells, and tissues. Mass transport through membranes: diffusion, osmosis, chemically mediated, and active transport. Electric properties of cells: ion transport; equilibrium, resting, and action potentials. Kinetic and molecular properties of single voltage-gated ion channels. Laboratory and computer exercises illustrate the concepts. For juniors and seniors. Students engage in extensive written and oral communication exercises.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Freeman, Dennis
Date Added:
01/01/2004
Quantitative Reasoning & Statistical Methods for Planners I, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course develops logical, empirically based arguments using statistical techniques and analytic methods. Elementary statistics, probability, and other types of quantitative reasoning useful for description, estimation, comparison, and explanation are covered. Emphasis is on the use and limitations of analytical techniques in planning practice.

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Glenn, Ezra Haber
Date Added:
01/01/2009
Quantum Complexity Theory, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to quantum computational complexity theory, the study of the fundamental capabilities and limitations of quantum computers. Topics include complexity classes, lower bounds, communication complexity, proofs, advice, and interactive proof systems in the quantum world. The objective is to bring students to the research frontier.

Subject:
Applied Science
Information Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Aaronson, Scott
Date Added:
01/01/2010
Quantum Cryptography
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How can you tell a secret when everyone is able to listen in? In this course, you will learn how to use quantum effects, such as quantum entanglement and uncertainty, to implement cryptographic tasks with levels of security that are impossible to achieve classically.

This interdisciplinary course is an introduction to the exciting field of quantum cryptography, developed in collaboration between QuTech at Delft University of Technology and the California Institute of Technology.

By the end of the course you will

Be armed with a fundamental toolbox for understanding, designing and analyzing quantum protocols.
Understand quantum key distribution protocols.
Understand how untrusted quantum devices can be tested.
Be familiar with modern quantum cryptography – beyond quantum key distribution.
This course assumes a solid knowledge of linear algebra and probability at the level of an advanced undergraduate. Basic knowledge of elementary quantum information (qubits and simple measurements) is also assumed, but if you are completely new to quantum information additional videos are provided for you to fill in any gaps.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Stephanie Wehner
Thomas Vidick
Date Added:
07/14/2021
Quantum Information Science, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course examines quantum computation and quantum information. Topics include quantum circuits, quantum Fourier transform and search algorithms, physical implementations, the quantum operations formalism, quantum error correction, stabilizer and Calderbank-Shor-Steans codes, fault tolerant quantum computation, quantum data compression, entanglement, and proof of the security of quantum cryptography. Prior knowledge of quantum mechanics and basic information theory is required.

Subject:
Applied Science
Information Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Shor, Peter
Date Added:
01/01/2006
The Quantum Internet and Quantum Computers: How Will They Change the World?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

There is no doubt that quantum computers and the quantum internet will have a great impact on our world. But we don’t yet know quite how. As with traditional computers – we will only see the effects in the decades to come.

This course will provide you with a basic understanding of quantum computing and the quantum internet. Together, we’ll peek into the fascinating world of quantum phenomena, such as qubits, superposition, and entanglement.

We’ll envision the potential impact of quantum computing and the quantum internet.

You’ll explore various application areas, such as quantum chemistry, quantum machine learning, encryption and secure communication, factorization, and blind quantum computation.

The course is aimed at a broad and diverse audience including policy-makers, people with a scientific or personal interest, business executives, and students at all levels.

We invite you on a journey beyond what is known to us now, and to envision a world with quantum technologies.

This journey will continue in a second course planned for May 2018, where we will expand from an understanding of the building blocks of Quantum Computers to look at further applications and possibilities.

This course is authored by experts from the QuTech research center at Delft University of Technology. In the center scientists and engineers work together to enhance research and development in quantum technology. QuTech Academy’s aim is to inspire, share and disseminate knowledge about the latest developments in quantum technology.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr. Lieven Vandersypen
Stephanie Wehner
dr.ir. Menno Veldhorst
Date Added:
07/14/2021
Quantum Physics II, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Together, this course and 8.06 Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Barton Zwiebach
Date Added:
01/01/2013
Quantum Physics III, Spring 2016
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

8.06 is the third course in the three-sequence physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems using both exact analytic techniques and various approximation methods. This course will introduce some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of Hydrogen, lasers, and particle scattering.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Aram Harrow
Date Added:
01/01/2016
Quantum Physics III, Spring 2018
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a continuation of 8.05 Quantum Physics II. It introduces some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of hydrogen, lasers, and particle scattering.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Barton Zwiebach
Date Added:
01/01/2018
Quantum Theory II, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A two-semester subject on quantum theory, stressing principles: uncertainty relation, observables, eigenstates, eigenvalues, probabilities of the results of measurement, transformation theory, equations of motion, and constants of motion. Symmetry in quantum mechanics, representations of symmetry groups. Variational and perturbation approximations. Systems of identical particles and applications. Time-dependent perturbation theory. Scattering theory: phase shifts, Born approximation. The quantum theory of radiation. Second quantization and many-body theory. Relativistic quantum mechanics of one electron. This is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.

Subject:
Mathematics
Physical Science
Physics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Taylor, Washington
Date Added:
01/01/2003
Quantum Theory of Radiation Interactions, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject introduces the key concepts and formalism of quantum mechanics and their relevance to topics in current research and to practical applications. Starting from the foundation of quantum mechanics and its applications in simple discrete systems, it develops the basic principles of interaction of electromagnetic radiation with matter. Topics covered are composite systems and entanglement, open system dynamics and decoherence, quantum theory of radiation, time-dependent perturbation theory, scattering and cross sections. Examples are drawn from active research topics and applications, such as quantum information processing, coherent control of radiation-matter interactions, neutron interferometry and magnetic resonance.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Paola Cappellaro
Date Added:
01/01/2012
Quasi-Balanced Circulations in Oceans and Atmospheres, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the students to dynamics of large-scale circulations in oceans and atmospheres. Basic concepts include mass and momentum conservation, hydrostatic and geostrophic balance, and pressure and other vertical coordinates. It covers the topics of fundamental conservation and balance principles for large-scale flow, generation and dissipation of quasi-balanced eddies, as well as equilibrated quasi-balanced systems. Examples of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments can be found in the accompaniment laboratory course 12.804, Large-scale Flow Dynamics Lab.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Emanuel, Kerry
Date Added:
01/01/2009
Queer Cinema and Visual Culture , Fall 2017
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course analyzes mainstream, popular films produced in the post-World War II 20th century U.S. as cultural texts that shed light on ongoing historical struggles over gender identity and appropriate sexual behaviors. It traces the history of LGBTQ/queer film through the 20th and into the 21st century. It also examines the effect of the Hollywood Production Code and censorship of sexual themes and content, and the subsequent subversion of queer cultural production in embedded codes and metaphors. In addition, this course also considers the significance of these films as artifacts and examples of various aspects of queer theory.

Subject:
Arts and Humanities
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
K.J. Surkan
Date Added:
07/06/2021
Queues: Theory and Applications, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class deals with the modeling and analysis of queueing systems, with applications in communications, manufacturing, computers, call centers, service industries and transportation. Topics include birth-death processes and simple Markovian queues, networks of queues and product form networks, single and multi-server queues, multi-class queueing networks, fluid models, adversarial queueing networks, heavy-traffic theory and diffusion approximations. The course will cover state of the art results which lead to research opportunities.

Subject:
Career and Technical Education
Manufacturing
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Gamarnik, David
Date Added:
01/01/2006
A Quick and Dirty Guide to Art, Music, and Culture
Unrestricted Use
CC BY
Rating
0.0 stars

We will study not only art and music to better understand these forms, we will also study where those forms came from and the cultural and economic impact they had on the public. We will also learn about how the artists and musicians dealt with or got around gatekeepers, along with who could get access to these forms of art and music.

Subject:
Arts and Humanities
Material Type:
Full Course
Textbook
Provider:
The Ohio State University
Provider Set:
Pressbooks
Author:
Clayton Funk
Date Added:
01/01/2016
RNA Interference: A New Tool for Genetic Analysis and Therapeutics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Seminar covering topics of current interest in biology. Includes reading and analysis of research papers and student presentations. Contact Biology Education Office for topics. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has already changed the way biomedical research is done and that may even prove useful for genetic interventions in a clinical context. In this course, students learn how RNAi was discovered, how it works, and what its physiological relevance might be. How RNAi can be harnessed to modulate gene expression and perform genetic screens, both in cells and in various organisms is also covered. Finally, this course examines the first attempts to use RNAi for the treatment of models of human diseases in experimental animals.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kissler, Stephan
Ventura, Andrea
Date Added:
01/01/2004
RNAi: A Revolution in Biology and Therapeutics, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Despite centuries of effort, modern medicine still struggles to find the source of disease and to provide specific treatment without side effects. Both traditional small molecules and protein-based therapeutics have achieved only limited success. What is the next therapeutic frontier? The answer may be RNA interference. In this course, we will focus on the therapeutic potential of RNAi. We will discuss its discovery functions in normal biological processes, utility as an experimental tool, potential for therapeutic use, and pursuit by the biotechnology industry. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Goldberg, Michael
Gurtan, Allan
Date Added:
01/01/2010