Updating search results...

Search Resources

2825 Results

View
Selected filters:
  • Applied Science
Fun with Air-Powered Pneumatics
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as engineering teams in this introductory pneumatics lab, students design and build working pneumatic (air-powered) systems. The goal is to create systems that launch balls into the air. They record and analyze data from their launches.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alyssa Burger
Jacob Givand
Jeffrey Schreifels
Will Durfee
and Melissa Schreifels
Date Added:
09/18/2014
Fun with Bernoulli
Read the Fine Print
Educational Use
Rating
0.0 stars

While we know air exists around us all the time, we usually do not notice the air pressure. During this activity, students use Bernoulli's principle to manipulate air pressure so its influence can be seen on the objects around us.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
Fun with Nanotechnology
Read the Fine Print
Educational Use
Rating
0.0 stars

Through three teacher-led demonstrations, students are shown samplers of real-world nanotechnology applications involving ferrofluids, quantum dots and gold nanoparticles. This nanomaterials engineering lesson introduces practical applications for nanotechnology and some scientific principles related to such applications. It provides students with a first-hand understanding of how nanotechnology and nanomaterials really work. Through the interactive demos, their interest is piqued about the odd and intriguing nano-materials behaviors they witness, which engages them to next conduct the three fun associated nanoscale technologies activities. The demos use materials readily available if supplies are handy for the three associated activities.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Sarah Castillo
Date Added:
09/18/2014
Furniture Making, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Furniture making is in many ways like bridge building, connections holding posts apart with spans to support a deck. Many architects have tried their hand at furniture design, Wright, Mies Van Der Rohe, Aalto, Saarinen, Le Corbusier, and Gerhy. We will review the history of furniture making in America with a visit to the Decorative Arts Collection at the Museum of Fine Arts in Boston and have Cambridge artist/craftsman Mitch Ryerson show us his work and talk about design process. Students will learn traditional woodworking techniques beginning with the use of hand tools, power tools and finally woodworking machines. Students will build a single piece of furniture of an original design that must support someone weighing 185 lbs. sitting on it 12 inches off the ground made primarily of wood. Students should expect to spend approximately 80 hours in the shop outside of class time. Preregistered architecture students will get first priority but first meeting attendance is mandatory. Twelve student maximum, no exceptions.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Dewart, Christopher
Date Added:
01/01/2005
Future Flights!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson is an exciting conclusion to the airplanes unit that encourages students to think creatively. After a review of the concepts learned, students will design their own flying machine based on their knowledge of the forces involved in flight, the properties of available materials, and the ways in which their flying machine could benefit society. Students will also learn how the brainstorming process helps in creative thinking and inventing and that scientists and engineers use this technique to come up with new products or modify and improve exiting products.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
GIS, Mathematics and Engineering Integration
Read the Fine Print
Educational Use
Rating
0.0 stars

The concept of geocaching is introduced as a way for students to explore using a global positioning system (GPS) device and basic geographic information (GIS) skills. Students familiarize themselves with GPS, GIS, and geocaching as well as the concepts of latitude and longitude. They develop the skills and concepts needed to complete the associated activity while considering how these technologies relate to engineering. Students discuss images associated with GPS, watch a video on how GPS is used, and review a slide show of GIS basics. They estimate their location using latitude and longitude on a world map and watch a video that introduces the geocaching phenomenon. Finally, students practice using a GPS device to gain an understanding of the technology and how location and direction features work while sending and receiving data to a GIS such as Google Earth.

Subject:
Applied Science
Engineering
Geometry
Mathematics
Measurement and Data
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Andrea Burrows
Jake Schell
Date Added:
10/06/2018
GPS on the Move
Read the Fine Print
Educational Use
Rating
0.0 stars

During a scavenger hunt and an art project, students learn how to use a handheld GPS receiver for personal navigation. Teachers can request assistance from the Institute of Navigation to find nearby members with experience in using GPS and in locating receivers to use.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Matt Lundberg
Penny Axelrad
Date Added:
09/18/2014
Game Design, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides practical instruction in the design and analysis of non-digital games. Students cover the texts, tools, references and historical context to analyze and compare game designs across a variety of genres, including sports, game shows, games of chance, card games, schoolyard games, board games, and role–playing games. In teams, students design, develop, and thoroughly test their original games to understand the interaction and evolution of game rules. Students taking the graduate version complete additional assignments.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Begy, Jason
Tan, Philip
Date Added:
01/01/2010
Gaoming Studio - China, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The studio will focus on the district of Gaoming, located in the northwest of the Pearl River Delta (PRD) - the fastest growing and most productive region of China. The District has recently completed a planning effort in which several design institutes and a Hong Kong planning firm prepared ideas for a new central area near the river. The class will complement these efforts by focusing on planning and design options on the waterfront of the proposed new district and ways of integrating water/hydrological factors into all aspects and land uses of a modern city (residential, commercial, industrial) - including watershed and natural ecosystem protection, economic and recreational activities, transportation, and tourism.

Subject:
Applied Science
Architecture and Design
Ecology
Hydrology
Life Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lee, Tunney
Date Added:
01/01/2005
Garnier's Paris Opera
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This art history video discussion examines The Paris Opera (1860-75) by architect Charles Garnier.

Subject:
Applied Science
Architecture and Design
Art History
Arts and Humanities
Material Type:
Diagram/Illustration
Lecture
Provider:
Khan Academy
Provider Set:
Smarthistory
Author:
Beth Harris
Steven Zucker
Date Added:
07/07/2021
Gaudi, Sagrada Familia
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This art history video discussion examines Antoni Gaudi's Church of the Sagrada Familia or Basilica i Temple Expiatori de la Sagrada Familia Basilica, 1882- (consecrated 2, but still under construction), Barcelona, Spain.

Subject:
Applied Science
Architecture and Design
Art History
Arts and Humanities
Material Type:
Diagram/Illustration
Lecture
Provider:
Khan Academy
Provider Set:
Smarthistory
Author:
Beth Harris
Steven Zucker
Date Added:
07/07/2021
Gears: Determining Angular Velocity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work as engineers and learn to conduct controlled experiments by changing one experimental variable at a time to study its effect on the experiment outcome. Specifically, they conduct experiments to determine the angular velocity for a gear train with varying gear ratios and lengths. Student groups assemble LEGO MINDSTORMS(TM) NXT robots with variously sized gears in a gear train and then design programs using the NXT software to cause the motor to rotate all the gears in the gear train. They use the LEGO data logging program and light sensors to set up experiments. They run the program with the motor and the light sensor at the same time and analyze the resulting plot in order to determine the angular velocity using the provided physics-based equations. Finally, students manipulate the gear train with different gears and different lengths in order to analyze all these factors and figure out which manipulation has a higher angular velocity. They use the equations for circumference of a circle and angular velocity; and convert units between radians and degrees.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Cox
Jasmin Mejias
Jennifer S. Haghpanah
Leonarda Huertas
Mihai Pruna
Date Added:
09/18/2014
Gears: Lift It Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

A gear is a simple machine that is very useful to increase the speed or torque of a wheel. In this activity, students learn about the trade-off between speed and torque when designing gear ratios. The activity setup includes a LEGO(TM) MINDSTORMS(TM) NXT pulley system with two independent gear sets and motors that spin two pulleys. Each pulley has weights attached by string. In a teacher demonstration, the effect of adding increasing amounts of weight to the pulley systems with different gear ratios is observed as the system's ability to lift the weights is tested. Then student teams are challenged to design a gear set that will lift a given load as quickly as possible. They test and refine their designs to find the ideal gear ratio, one that provides enough torque to lift the weight while still achieving the fastest speed possible.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeffrey Laut
Paul Phamduy
Date Added:
10/14/2015
Generators: Three Mile Island vs. Hoover Dam
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given a history of electricity and its development into the modern age lifeline upon which we so depend. The methods of power generation are introduced, and further discussion of each technology's pros and cons follows.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandon Jones
Date Added:
09/18/2014
Genomic Medicine, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lecturers begin each lecture block with a scenario, in order to set the stage and engage the student by showing: why is this important to know? how will the information presented be brought to bear on medical practice? The final section presents the ethical, legal, and social issues surrounding genomic medicine. A vision of how genomic medicine relates to preventative care and public health is presented in a discussion forum with the students where the following questions are explored: what is your level of preparedness now? what challenges must be met by the healthcare industry to get to where it needs to be?

Subject:
Applied Science
Genetics
Health, Medicine and Nursing
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kohane, Isaac
Date Added:
01/01/2004
A Gentle Introduction to Programming Using Python, January IAP 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will provide a gentle, yet intense, introduction to programming using Python for highly motivated students with little or no prior experience in programming. The course will focus on planning and organizing programs, as well as the grammar of the Python programming language. The course is designed to help prepare students for 6.01 Introduction to EECS. 6.01 assumes some knowledge of Python upon entering; the course material for 6.189 has been specially designed to make sure that concepts important to 6.01 are covered. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Canelake, Sarina
Date Added:
01/01/2010
Geometric Disciplines and Architecture Skills: Reciprocal Methodologies, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an intensive introduction to architectural design tools and process, and is taught through a series of short exercises. The conceptual basis of each exercise is in the interrogation of the geometric principles that lie at the core of each skill. Skills covered in this course range from techniques of hand drafting, to generation of 3D computer models, physical model-building, sketching, and diagramming. Weekly lectures and pin-ups address the conventions associated with modes of architectural representation and their capacity to convey ideas. This course is tailored and offered only to first-year M.Arch students.

Subject:
Applied Science
Architecture and Design
Geometry
Mathematics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Brandon Clifford
Date Added:
01/01/2012
Geometry and Geocaching Using GIS & GPS
Read the Fine Print
Educational Use
Rating
0.0 stars

Students take on the role of geographers and civil engineers and use a device enabled with the global positioning system (GPS) to locate geocache locations via a number of waypoints. Teams save their data points, upload them to geographic information systems (GIS) software, such as Google Earth, and create scale drawings of their explorations while solving problems of area, perimeter and rates. The activity is unique in its integration of technology for solving mathematical problems and asks students to relate GPS and GIS to engineering.

Subject:
Applied Science
Engineering
Geometry
Mathematics
Measurement and Data
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Andrea Burrows
Jake Schell
Date Added:
10/05/2018
Get Charged!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the idea of electrical energy. They learn about the relationships between charge, voltage, current and resistance. They discover that electrical energy is the form of energy that powers most of their household appliances and toys. In the associated activities, students learn how a circuit works and test materials to see if they conduct electricity. Building upon a general understanding of electrical energy, they design their own potato power experiment. In two literacy activities, students learn about the electrical power grid and blackouts.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
09/18/2014