Updating search results...

Search Resources

2825 Results

View
Selected filters:
  • Applied Science
Evolving Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Ontwerpen is een combinatie van logisch redeneren en het creatief combineren van bestaande technieken om tot nieuwe, innovatieve ideeen te komen. Een goede werktuigkundig ontwerper put zijn creativiteit uit kennis van een groot aantal bestaande werktuigbouwkundige systemen. Hoe groter die kennis, hoe groter de kans dat nieuwe, innovatieve ontwerpconcepten ontstaan. Vooral kennis over niet-conventionele techniek bevordert dit creatieve ontwerpproces.

Het doel van het vak Evolving Design is om studenten de onderhavige werkprincipes te tonen van een grote hoeveelheid niet-conventionele werktuigbouwkundige systemen. Er wordt hierbij zowel gekeken naar bijzondere ontdekkingen uit het verleden als uit het heden, met een blik op de toekomst. De ontwerpprincipes worden niet simpelweg opgesomd, maar geplaatst in hun fascinerende, historische ontwikkeling om te laten zien hoe de ontwerpers hun creativiteit en vernuft gebruik(t)en om goedwerkende oplossingen te vinden binnen de beperkingen van de beschikbare fabricageprocessen en beschermingsmogelijkheden (patenten). Veel oplossingen uit het verleden zijn klaar om te worden toegepast in de technologie van de toekomst!

Het vak richt zich primair op het kwalitatief beschrijven van de werkprincipes van bestaande technologieen, met de nadruk op bewegende mechanische constructies. Hoewel het kwantatief, in detail uitwerken van de kracht-bewegingsvergelijkingen niet het hoofddoel van het vak is, zijn mechanische vergelijkingen wel essentieel als zij leiden tot een beter begrip.

Subject:
Applied Science
Architecture and Design
Material Type:
Activity/Lab
Assessment
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. ir. P. (Paul) Breedveld
Date Added:
02/16/2016
Evolving TCE Biodegraders
Read the Fine Print
Educational Use
Rating
0.0 stars

A hypothetical scenario is introduced in which the class is asked to apply their understanding of the forces that drive natural selection to prepare a proposal along with an environmental consulting company to help clean up an area near their school that is contaminated with trichloroethylene (TCE). Students use the Avida-ED software application to test hypotheses for evolving (engineering) a strain of bacteria that can biodegrade TCE, resulting in a non-hazardous clean-up solution. Conduct this design challenge activity after completion of the introduction to digital evolution activity, Studying Evolution with Digital Organisms.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Lark
Louise Mead
Robert Pennock
Wendy Johnson
Date Added:
09/18/2014
Experiencing Architecture Studio, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Uses scale models to design environments that orchestrate contrasting material properties and conventional constructional systems to create places that foster specific ways of inhabiting space. Demonstrates how architecture differs from other forms of design. Intended for students to test aptitude for architectural design and to experience an unfamiliar mode of thought. Conducted in a studio format, with lectures on architectural theory and history, and structured for students with no previous experience in design. Required of Course IV majors.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hubbard, William Q.
Date Added:
01/01/2003
Experimental Projects II, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Gain practical insight and improved understanding of engineering experimentation through design and execution of "project" experiments. Building upon work in 16.621, students construct and test equipment, make systematic experimental measurements of phenomena, analyze data, and compare theoretical predictions with results. Written final report on entire project and formal oral presentation. Includes instructions on oral presentations. Provides valuable link between theory and practice.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Craig, Jennifer Lynn
Deyst, John J.
Greitzer, Edward
Date Added:
01/01/2003
Experimental Projects I, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces laboratory experimental techniques. Principles of experimental design and reliable measurement. Laboratory safety. Instruction in effective report writing and oral presentation, including revision of written work. Selection and detailed planning of an individual research project, including design of components or equipment. Preparation of a detailed proposal for the selected project carried through to completion under 16.622.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Greitzer, Edward
Date Added:
01/01/2003
Exploiting Polarization: Designing More Effective Sunglasses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply what they know about light polarization and attenuation (learned in the associated lesson) to design, build, test, refine and then advertise their prototypes for more effective sunglasses. Presented as a hypothetical design scenario, students act as engineers who are challenged to create improved sunglasses that reduce glare and lower light intensity while increasing eye protection from UVA and UVB radiation compared to an existing model of sunglasses—and make them as inexpensive as possible. They use a light meter to measure and compare light intensities through the commercial sunglasses and their prototype lenses. They consider the project requirements and constraints in their designs. They brainstorm and evaluate possible design ideas. They keep track of materials costs. They create and present advertisements to the class that promote the sunglasses benefits, using collected data to justify their claims. A grading rubric and reflection handout are provided.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Adam Alster
Drew Kim
Quan Tran
Date Added:
05/30/2018
Exploring Acceleration with an Android
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct an experiment to study the acceleration of a mobile Android device. During the experiment, they run an application created with MIT's App Inventor that monitors linear acceleration in one-dimension. Students use an acceleration vs. time equation to construct an approximate velocity vs. time graph. Students will understand the relationship between the object's mass and acceleration and how that relates to the force applied to the object, which is Newton's second law of motion.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Exploring Bone Mineral Density
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will explore two given websites to gather information on Bone Mineral Density and how it is measured. They will also learn about X-rays in general, how they work and their different uses, along with other imaging modalities. They will answer guiding questions as they explore the websites and take a short quiz after to test the knowledge they gained while reading the articles.

Subject:
Applied Science
Engineering
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Date Added:
09/18/2014
Exploring Capillary Action
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe multiple examples of capillary action. First they observe the shape of a glass-water meniscus and explain its shape in terms of the adhesive attraction of the water to the glass. Then they study capillary tubes and observe water climbing due to capillary action in the glass tubes. Finally, students experience a real-world application of capillary action by designing and using "capillary siphons" to filter water.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Exploring Energy
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about energy, kinetic energy, potential energy, and energy transfer through a series of three lessons and three activities. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. The associated activities give students hands-on experience with examples of potential-to-kinetic energy transfers. The activities also provide ways for students to apply the core concepts of energy through engineering practices such as building and testing prototypes to meet design criteria, planning and carrying out investigations, collecting and interpreting data, optimizing a system design, and collaborating with other research groups. The fundamental concepts presented in this unit serve as a good foundation for future lessons on energy technologies and electricity production.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Exploring Energy: Energy Conversion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of energy conversion, and how energy transfers from one form, place or object to another. They learn that energy transfers can take the form of force, electricity, light, heat and sound and are never without some energy "loss" during the process. Two real-world examples of engineered systems light bulbs and cars are examined in light of the law of conservation of energy to gain an understanding of their energy conversions and inefficiencies/losses. Students' eyes are opened to the examples of energy transfer going on around them every day. Includes two simple teacher demos using a tennis ball and ball bearings. A PowerPoint(TM) presentation and quizzes are provided.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Exploring Energy: Kinetic and Potential
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about kinetic and potential energy, including various types of potential energy: chemical, gravitational, elastic and thermal energy. They identify everyday examples of these energy types, as well as the mechanism of corresponding energy transfers. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. Further, the concept that energy can be neither created nor destroyed is reinforced, as students see the pervasiveness of energy transfer among its many different forms. A PowerPoint(TM) presentation and post-quiz are provided.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Exploring Energy: What Is Energy?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the definition of energy and the concepts of kinetic energy, potential energy, and energy transfer. This lesson is a broad overview of concepts that are taught in more detail in subsequent lessons and activities in this curricular unit. A PowerPoint(TM) presentation and pre/post quizzes are provided.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Exploring Light: Absorb, Reflect, Transmit or Refract?
Read the Fine Print
Educational Use
Rating
0.0 stars

In a hands-on way, students explore light's properties of absorption, reflection, transmission and refraction through various experimental stations within the classroom. To understand absorption, reflection and transmission, they shine flashlights on a number of preselected objects. To understand refraction, students create indoor rainbows. An understanding of the fundamental properties of light is essential to designing an invisible laser security system.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Exploring Nondestructive Evaluation Methods
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this lesson and its series of hands-on mini-activities, students answer the question: How can we investigate and measure the inside of an object or its structure if we cannot take it apart? Unlike the destructive nuclear weapon test (!), nondestructive evaluation (NDE) methods are able to accomplish this. After an introductory slide presentation, small groups rotate through five mini-activity stations: 1) applying Maxwell’s equations, 2) generating currents, 3) creating magnetic fields, 4) solving a system of equations, and 5) understanding why the finite element method (FEM) is important. Through the short experiments, students become familiar with the science and physics being used and make the mathematical connections. They explore components of NDE and see how engineers find unseen flaws and cracks in materials that make aircraft. A pre/post quiz, slide presentation and worksheet are included.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Measurement and Data
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Anton Efremov
Marianne Livezey
Oleksii Karpenko
Date Added:
11/01/2017
Exploring Sea, Space, & Earth: Fundamentals of Engineering Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. This course introduces core engineering themes, principles, and modes of thinking, and includes exercises in written and oral communication and team building. Specialized learning modules enable teams to focus on the knowledge required to complete their projects, such as machine elements, electronics, design process, visualization and communication. Examples of projects include surveying a lake for millfoil from a remote controlled aircraft, then sending out robotic harvesters to clear the invasive growth; and exploration to search for the evidence of life on a moon of Jupiter, with scientists participating through teleoperation and supervisory control of robots.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Techet, Alexandra
Date Added:
01/01/2009
Exploring Solar Power
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the methods engineers have devised for harnessing sunlight to generate power. First, they investigate heat transfer and heat storage through the construction, testing and use of a solar oven. With a lesson focused on photovoltaic cells, students learn the concepts of energy conversion, conservation of energy, current and voltage. By constructing model solar powered cars, students see these conceptual ideas manifested in modern technology. Furthermore, the solar car project provides opportunities to explore a number of other topics, such as gear ratios and simple mechanics. Both of these design and construction projects are examples of engineering design.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Lauren Powell
Date Added:
09/18/2014
Exploring the Electromagnetic Spectrum
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basics of the electromagnetic spectrum and how various types of electromagnetic waves are related in terms of wavelength and energy. In addition, they are introduced to the various types of waves that make up the electromagnetic spectrum including, radio waves, ultraviolet waves, visible light and infrared waves. These topics help inform students before they turn to designing solutions to an overarching engineering challenge question.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Ellen Zielinski
Date Added:
09/18/2014
Exploring the Lotus Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students test and observe the "self-cleaning" lotus effect using a lotus leaf and cloth treated with a synthetic lotus-like superhydrophobic coating. They also observe the Wenzel and Cassie Baxter wetting states by creating and manipulating condensation droplets on the leaf surface. They consider the real-life engineering applications for these amazing water-repellent and self-cleaning properties.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014