Updating search results...

Search Resources

249 Results

View
Selected filters:
  • energy
Hot Cans and Cold Cans
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply the concepts of conduction, convection and radiation as they work in teams to solve two challenges. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately human body temperature, and the other problem is to cause an identical soda can of warm water to cool as much as possible during the same 30-minute time period. Students design their engineering solutions using only common everyday materials, and test their devices by recording the water temperatures in their two soda cans every five minutes.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Household Energy Audit
Read the Fine Print
Educational Use
Rating
0.0 stars

Students review the electrical appliances used at home and estimate the energy used for each. The results can help to show the energy hogs that could benefit from conservation or improved efficiency.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Household Energy Conservation and Efficiency
Read the Fine Print
Educational Use
Rating
0.0 stars

Students complete three different activities to evaluate the energy consumption in a household and explore potential ways to reduce that consumption. The focus is on conservation and energy efficient electrical devices and appliances. The lesson reinforces the relationship between power and energy and associated measurements and calculations required to evaluate energy consumption. The lesson provides the students with more concrete information for completing their culminating unit assignment.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
How Does a Robot Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces electricity, batteries and motors using a LEGO® MINDSTORMS NXT® robot. The associated activity guides students to build a simple LEGO NXT set-up and see the practical implementation of the concepts discussed. Before studying the importance of electricity and how it is crucial for robot movement, students consider various electronic devices they use in their daily lives so that they have an understanding of how engineers use electricity to power such devices, including robots. The lesson starts with a brief introduction to electricity and the working of batteries. A simple electrical circuit demonstration highlights how three basic electrical devices (buzzer, LED and motor) are driven by electricity. An activity at the end further reinforces these concepts.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ajay Nair
Kalyani Upendram
Satish Nair
Date Added:
09/18/2014
How Hot Is It?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the nature of thermal energy, temperature and how materials store thermal energy. They discuss the difference between conduction, convection and radiation of thermal energy, and complete activities in which they investigate the difference between temperature, thermal energy and the heat capacity of different materials. Students also learn how some engineering requires an understanding of thermal energy.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
How Much Heat Will It Hold?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students relate thermal energy to heat capacity by comparing the heat capacities of different materials and graphing the change in temperature over time for a specific material. Students learn why heat capacity is an important property of thermal energy that engineers use in many applications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Human Power
Read the Fine Print
Educational Use
Rating
0.0 stars

Students do work by lifting a known mass over a period of time. The mass and measured distance and time is used to calculate force, work, energy and power in metric units. The students' power is then compared to horse power and the power required to light 60-watt light bulbs.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Humans Are Like Robots
Read the Fine Print
Educational Use
Rating
0.0 stars

Four lessons related to robots and people present students with life sciences concepts related to the human body (including brain, nervous systems and muscles), introduced through engineering devices and subjects (including computers, actuators, electricity and sensors), via hands-on LEGO® robot activities. Students learn what a robot is and how it works, and then the similarities and differences between humans and robots. For instance, in lesson 3 and its activity, the human parts involved in moving and walking are compared with the corresponding robot components so students see various engineering concepts at work in the functioning of the human body. This helps them to see the human body as a system, that is, from the perspective of an engineer. Students learn how movement results from 1) decision making, such as deciding to walk and move, and 2) implementation by conveying decisions to muscles (human) or motors (robot).

Subject:
Applied Science
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ajay Nair
Kalyani Upendram
Satish Nair
Date Added:
09/18/2014
Hydrodynamics (13.012), Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the development of the fundamental equations of fluid mechanics and their simplifications for several areas of marine hydrodynamics and the application of these principles to the solution of engineering problems. Topics include the principles of conservation of mass, momentum and energy, lift and drag forces, laminar and turbulent flows, dimensional analysis, added mass, and linear surface waves, including wave velocities, propagation phenomena, and descriptions of real sea waves. Wave forces on structures are treated in the context of design and basic seakeeping analysis of ships and offshore platforms. Geophysical fluid dynamics will also be addressed including distributions of salinity, temperature, and density; heat balance in the ocean; major ocean circulations and geostrophic flows; and the influence of wind stress. Experimental projects conducted in ocean engineering laboratories illustrating concepts taught in class, including ship resistance and model testing, lift and drag forces on submerged bodies, and vehicle propulsion.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Techet, Alexandra
Date Added:
01/01/2005
Ice, Ice, PV!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine how the power output of a photovoltaic (PV) solar panel is affected by temperature changes. Using a 100-watt lamp and a small PV panel connected to a digital multimeter, teams vary the temperature of the panel and record the resulting voltage output. They plot the panel's power output and calculate the panel's temperature coefficient.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eszter Horanyi
Jack Baum Abby Watrous
Malinda Schaefer Zarske
Stephen Johnson
William Surles
Date Added:
09/18/2014
Into Space!
Read the Fine Print
Educational Use
Rating
0.0 stars

While building and testing model rockets fueled by antacid tablets, students are introduced to the basic physics concepts on how rockets work. Students revise and improve their initial designs. Note: This activity is similar to the elementary-level film canister rockets activity, but adapted for middle school students.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Janet Yowell
Jeff White
Jessica Butterfield
Jessica Todd
Karen King
Sam Semakula
Date Added:
10/14/2015
Intraocular Pressure Sensor Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Acting as if they are biomedical engineers, students design and print 3D prototypes of pressure sensors that measure the pressure of the eyes of people diagnosed with glaucoma. After completing the tasks within the associated lesson, students conduct research on pressure gauges, apply their understanding of radio-frequency identification (RFID) technology and its components, iterate their designs to make improvements, and use 3D software to design and print 3D prototypes. After successful 3D printing, teams present their models to their peers. If a 3D printer is not available, use alternate fabrication materials such as modeling clay, or end the activity once the designs are complete.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janelle Orange
Date Added:
10/14/2015
Introductie in energie- en industriesystemen
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Deze cursus geeft een introductie op de massa- en energienetwerken die de ruggengraat vormen van de economie. De belangrijkste energie- en industriesystemen worden vanuit verschillende perspectieven besproken.

- Kaartkennis van energie- & industriesystemen, met name in Nederland
- Voorraden en stromen, elektriciteitsinfrastructuur, elektriciteitstransport, aardgasinfrastructuur, drink- en afvalwater, industrie, warmte- en CO2-netwerken, toekomstige energie- & industriesystemen
- Vraag- en aanbodfluctuaties, balanshandhaving

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Assessment
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. E.J.L. Chappin
Date Added:
07/14/2021
Introduction to Electric Power Systems, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introductory subject in the field of electric power systems and electrical to mechanical energy conversion. Electric power has become increasingly important as a way of transmitting and transforming energy in industrial, military and transportation uses. Electric power systems are also at the heart of alternative energy systems, including wind and solar electric, geothermal and small scale hydroelectric generation.

Subject:
Applied Science
Computer Science
Education
Engineering
Material Type:
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Lesson Plan
Reading
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kirtley, James
Kirtley, James L.
Date Added:
01/01/2011
Introduction to Environmental Challenges in China
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an overview of some of the environmental challenges facing the growing and evolving country of China today, students learn about the effects of indoor and outdoor air pollution that China is struggling to curb with the help of engineers and scientists. This includes the sources of particulate matter 2.5 and carbon dioxide, and air pollution impacts on the health of people and the environment.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail T. Watrous
Denise W. Carlson
Janet Yowell
Stephanie Rivale
Date Added:
09/18/2014
Introduction to Integrated Design, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

During this course, we will be exploring basic questions of architecture through several short design exercises. Working with many different media, students will discover the interrelationship of architecture and its related disciplines, such as structures, sustainability, architectural history and the visual arts. Each problem will focus on one of these disciplines and one exploration and presentation technique.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Engineering
Visual Arts
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Watson, Angela
Date Added:
01/01/2006
Introduction to Technology and Policy, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Frameworks and Models for Technology and Policy students explore perspectives in the policy process -- agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises for Technology and Policy students include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership. This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Weigel, Annalisa
Date Added:
01/01/2006
Introduction to Transportation Systems, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

1.201J/11.545J/ESD.210J is required for all first-year Master of Science in Transportation students. It would be of interest to, as well as accessible to, students in Urban Studies and Planning, Political Science, Technology and Policy, Management, and various engineering departments. It is a good subject for those who plan to take only one subject in transportation and serves as an entry point to other transportation subjects as well. The subject focuses on fundamental principles of transportation systems, introduces transportation systems components and networks, and addresses how one invests in and operates them effectively. The tie between transportation and related systems is emphasized.

Subject:
Applied Science
Environmental Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sussman, Joseph
Date Added:
01/01/2006
Keeping Our Roads Smooth
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how roadways are designed and constructed, and discuss the advantages and limitations of the current roadway construction process. They look at current practices of roadway monitoring, discuss the limitations, and consider ways to further road monitoring research. To conclude, student groups compete to design smooth, cost-efficient and sound model road bases using gravel, sand, water and rubber (representing asphalt). This lesson prepares students for the associated activity in which they act as civil engineers hired by USDOT to research through their own model experimentation how to best use piezoelectric materials to detect road damage by showing how piezoelectric transducers can indicate road damage.

Subject:
Career and Technical Education
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Adam Alster
Amir Alvai
Andrea Varricchione
Drew Kim
Nizar Lajnef
Victoria Davis-King
Date Added:
07/07/2021
Kinetic and Potential Energy of Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to both potential energy and kinetic energy as forms of mechanical energy. A hands-on activity demonstrates how potential energy can change into kinetic energy by swinging a pendulum, illustrating the concept of conservation of energy. Students calculate the potential energy of the pendulum and predict how fast it will travel knowing that the potential energy will convert into kinetic energy. They verify their predictions by measuring the speed of the pendulum.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014