Lighting is responsible for nearly one-third of the electricity use in buildings. …
Lighting is responsible for nearly one-third of the electricity use in buildings. One of the best ways to conserve energy is to make sure the lights are turned off when no one is in a room. This process can be automated using motion sensors. In this activity, students explore material properties as they relate to motion detection, and use that knowledge to make design judgments about what types of motion detectors to use in specific applications.
Explore bending of light between two media with different indices of refraction. …
Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.
Students learn how the total solar irradiance hitting a photovoltaic (PV) panel …
Students learn how the total solar irradiance hitting a photovoltaic (PV) panel can be increased through the use of a concentrating device, such as a reflector or lens. This is the final lesson in the Photovoltaic Efficiency unit and is intended to accompany a fun design project (see the associated Concentrating on the Sun with PVs activity) to wrap up the unit. However, it can be completed independently of the other unit lessons and activities.
Students design, build and test reflectors to measure the effect of solar …
Students design, build and test reflectors to measure the effect of solar reflectance on the efficiency of solar PV panels. They use a small PV panel, a multimeter, cardboard and foil to build and test their reflectors in preparation for a class competition. Then they graph and discuss their results with the class. Complete this activity as part of the Photovoltaic Efficiency unit and in conjunction with the Concentrated Solar Power lesson.
Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on …
Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic fields. Charged particle motion in those fields. Particle acceleration and focussing. Collisons with charged particles and atoms. Electromagnetic waves, wave emission by accelerated particles, Bremsstrahlung. Compton scattering. Photoionization. Elementary applications to ranging, shielding, imaging, and radiation effects. This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation.
In a hands-on way, students explore light's properties of absorption, reflection, transmission …
In a hands-on way, students explore light's properties of absorption, reflection, transmission and refraction through various experimental stations within the classroom. To understand absorption, reflection and transmission, they shine flashlights on a number of preselected objects. To understand refraction, students create indoor rainbows. An understanding of the fundamental properties of light is essential to designing an invisible laser security system.
Students learn about geometric relationships by solving real mini putt examples on …
Students learn about geometric relationships by solving real mini putt examples on paper and then using putters and golf balls to experiment with the teacher’s pre-made mini put hole(s) framed by 2 x 4s, comparing their calculated (theoretical) results to real-world results. To “solve the holes,” they find the reflections of angles and then solve for those angles. They do this for 1-, 2- and 3-banked hole-in-one shots. Next, students apply their newly learned skills to design, solve and build their own mini putt holes, also made of 2 x 4s and steel corners.
Students learn about common geometry tools and then learn to use protractors …
Students learn about common geometry tools and then learn to use protractors (and Miras, if available) to create and measure angles and reflections. The lesson begins with a recap of the history and modern-day use of protractors, compasses and mirrors. After seeing some class practice problems and completing a set of worksheet-prompted problems, students share their methods and work. Through the lesson, students gain an awareness of the pervasive use of angles, and these tools, for design purposes related to engineering and everyday uses. This lesson prepares students to conduct the associated activity in which they “solve the holes” for hole-in-one multiple-banked angle solutions, make their own one-hole mini-golf courses with their own geometry-based problems and solutions, and then compare their “on paper” solutions to real-world results.
Students learn and use the properties of light to solve the following …
Students learn and use the properties of light to solve the following challenge: "A mummified troll was discovered this summer at our school and it has generated lots of interest worldwide. The principal asked us, the technology classes, to design a security system that alerts the police if someone tries to pilfer our prized possession. How can we construct a system that allows visitors to view our artifact during the day, but invisibly protects it at night in a cost-effective way?"
Students learn the basic properties of light the concepts of light absorption, …
Students learn the basic properties of light the concepts of light absorption, transmission, reflection and refraction, as well as the behavior of light during interference. Lecture information briefly addresses the electromagnetic spectrum and then provides more in-depth information on visible light. With this knowledge, students better understand lasers and are better prepared to design a security system for the mummified troll.
Through an introduction to the design of lighting systems and the electromagnetic …
Through an introduction to the design of lighting systems and the electromagnetic spectrum, students learn about the concept of daylighting as well as two types of light bulbs (lamps) often used in energy-efficient lighting design.
Students learn about the basic properties of light and how light interacts …
Students learn about the basic properties of light and how light interacts with objects. They are introduced to the additive and subtractive color systems, and the phenomena of refraction. Students further explore the differences between the additive and subtractive color systems via predictions, observations and analysis during three demonstrations. These topics help students gain a better understanding of how light is connected to color, bringing them closer to answering an overarching engineering challenge question.
Students examine various materials to investigate how they interact with light. They …
Students examine various materials to investigate how they interact with light. They use five characteristicsâtranslucency, transparency, opaqueness, reflectivity and refractivityâto describe how light interacts with the objects.
Students determine the refractive index of a liquid with a simple technique …
Students determine the refractive index of a liquid with a simple technique using a semi-circular hollow block. Then they predict the refractive index of a material (a Pyrex glass tube) by matching it with the known refractive index of a liquid using the percent light transmission measurement. The homemade light intensity detector uses an LED and multimeter, which are relatively inexpensive (and readily available) compared to commercially available measurement instruments.
This is the first lesson of this unit to introduce light. Lessons …
This is the first lesson of this unit to introduce light. Lessons 1-5 focus on sound, while 6-9 focus on light. In this lesson, students learn the five words that describe how light interacts with objects: "transparent," "translucent," "opaque," "reflection" and "refraction."
Opportunity for group study by graduate students on current topics related to …
Opportunity for group study by graduate students on current topics related to management not otherwise included in curriculum. Practical Leadership is an interactive seminar where students receive repeated coaching and real-time feedback on their own leadership capabilities from their peers and the instructor. The course is structured around a set of readings. However, the key component is each student's own self-assessment. These self-assessments are done by the students in the first week of the semester. The areas for improvement that the students identify are then targeted in the weekly role plays that are customized for each student in the class. The goal of the class is for each student to increase his or her own leadership abilities through an ongoing cycle of practice, feedback and reflection.
This ebook discusses the importance of reflection to helping professionals. Students are …
This ebook discusses the importance of reflection to helping professionals. Students are encouraged to practice self-reflection as they study human development. Wellness for students and future helping professionals is emphasized.
The science essay uses science to think about the human condition; it …
The science essay uses science to think about the human condition; it uses humanistic thinking to reflect on the possibilities and limits of science and technology. In this class we read and practice writing science essays of varied lengths and purposes. We will read a wide variety of science essays, ranging across disciplines, both to learn more about this genre and to inspire your own writing. This semester's reading centers on The Dark Side," with essays ranging from Alan Lightman's "Prisoner of the Wired World" through Robin Marantz Henig's cautionary account of nano-technology ("Our Silver-Coated Future") to David Quammen's investigation of diseases that jump from animals to humans ("Deadly Contact")."
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.