Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the functions proteins perform in the cell and in tissuesDiscuss the relationship between amino acids and proteinsExplain the four levels of protein organizationDescribe the ways in which protein shape and function are linked
This course is an introduction to computational biology emphasizing the fundamentals of …
This course is an introduction to computational biology emphasizing the fundamentals of nucleic acid and protein sequence and structural analysis; it also includes an introduction to the analysis of complex biological systems. Topics covered in the course include principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction and network modeling, as well as currently emerging research areas.
Seminar covering topics of current interest in biology. Includes reading and analysis …
Seminar covering topics of current interest in biology. Includes reading and analysis of research papers and student presentations. Contact Biology Education Office for topics. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. The instructor for this course, Dr. Kosinski-Collins, is a member of the HHMI Education Group. Maintenance of the complex three-dimensional structure adopted by a protein in the cell is vital for function. Oftentimes, as a consequence of environmental stress, genetic mutation, and/or infection, the folded structure of a protein gets altered and multiple proteins stick and fall out of solution in a process known as aggregation. In many protein aggregation diseases, incorrectly folded proteins self-associate, forming fiber-like aggregates that cause brain cell death and dementia. In this course, the molecular and biochemical basis of the prion diseases, which include bovine spongiform encephalopathy (mad cow disease), Creutzfedt-Jakob disease and kuru will be examined. Also discussed are other classes of misfolding diseases such as Alzheimer's disease and Huntington's disease. The proteins involved in all of these disorders and how the proteins' three dimensional structures change during the course of these afflictions is covered as well as why prions from certain species cannot infect animals from other species based on protein sequence and structure. The course will then address possible detection methods and therapies that are under development to treat some of the protein aggregation diseases.
Subject assesses the relationships between sequence, structure, and function in complex biological …
Subject assesses the relationships between sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive functional-genomics analyses. Topics include: algorithmic, statistical, database, and simulation approaches; and practical applications to biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations critically assessed. Problem sets and project emphasize creative, hands-on analyses using these concepts.
Statistical Physics in Biology is a survey of problems at the interface …
Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.