Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe how …
By the end of this section, you will be able to:Describe how changes to gene expression can cause cancerExplain how changes to gene expression at different levels can disrupt the cell cycleDiscuss how understanding regulation of gene expression can lead to better drug design
By the end of this section, you will be able to:Describe how …
By the end of this section, you will be able to:Describe how cancer is caused by uncontrolled cell growthUnderstand how proto-oncogenes are normal cell genes that, when mutated, become oncogenesDescribe how tumor suppressors functionExplain how mutant tumor suppressors cause cancer
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the structure of prokaryotic and eukaryotic genomesDistinguish between chromosomes, genes, and traitsDescribe the mechanisms of chromosome compaction
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the three stages of interphaseDiscuss the behavior of chromosomes during karyokinesisExplain how the cytoplasmic content is divided during cytokinesisDefine the quiescent G0 phase
The endoplasmic reticulum (ER) orchestrates different cellular processes by which proteins are …
The endoplasmic reticulum (ER) orchestrates different cellular processes by which proteins are synthesized, correctly folded, modified and ultimately transported to their final destinations. As part of this crucial biosynthetic process, proteins that are not properly folded and consequently detrimental to normal cellular function are constantly generated. A common signature of many neurodegenerative diseases, including Alzheimer's and Parkinson's, is accumulation and deposition of misfolded proteins that arise when the ability of cells to deal with the burden of misfolded proteins is compromised. In this course, we will explore how the ER quality control machinery ensures that only properly assembled proteins exit the ER while distinguishing between nascent proteins en route to their biologically active folded state from those that are terminally misfolded.
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.