Updating search results...

Search Resources

1447 Results

View
Selected filters:
  • Physical Science
Neon Lights & Other Discharge Lamps
Unrestricted Use
CC BY
Rating
0.0 stars

Produce light by bombarding atoms with electrons. See how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Sam McKagan
Date Added:
09/13/2006
Neutron Interactions and Applications, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is intended to introduce the student to the concepts and methods of transport theory needed in neutron science applications. This course is a foundational study of the effects of multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department. Stochastic and deterministic simulation techniques will be introduced to the students.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Forget, Benoit
Date Added:
01/01/2010
Neutron Science and Reactor Physics, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces fundamental properties of the neutron. It covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point kinetics, and fission-product poisoning. It emphasizes the nuclear physics bases of reactor design and its relationship to reactor engineering problems.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Forget, Benoit
Date Added:
01/01/2010
Newton Gets Me Moving
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will explore motion, rockets and rocket motion while assisting Spacewoman Tess, Spaceman Rohan and Maya in their explorations. They will first learn some basic facts about vehicles, rockets and why we use them. Then, the students will discover that the motion of all objects including the flight of a rocket and movement of a canoe is governed by Newton's three laws of motion.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Geoffrey Hill
Janet Yowell
Jay Shah
Jeff White
Malinda Schaefer Zarske
Date Added:
09/18/2014
Newton Rocket Car
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this activity is to demonstrate Newton's third law of motion which states that every action has an equal and opposite reaction through a small wooden car. The Newton cars show how action/reaction works and how the mass of a moving object affects the acceleration and force of the system. Subsequently, the Newton cars provide students with an excellent analogy for how rockets actually work.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Geoffrey Hill
Janet Yowell
Jay Shah
Jeff White
Malinda Schaefer Zarske
Date Added:
10/14/2015
Newton's 2nd law inquiry lab
Read the Fine Print
Educational Use
Rating
0.0 stars

In this physics lab, students investigate the motion of different skateboarders pulled with various values of constant force. Using skateboarders of different masses and a variety of constant force values, students produce distance vs. time motion graphs for a number of skateboarding trials. Students may develop their own methods for setting up the lab and recording the necessary data. Following data collection, students analyze the data using Newton's second law and discuss differences between trials, the effects of friction, and possible sources of error in the experiment.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Author:
Scott Holland
Date Added:
07/07/2021
Newton's Law of Cooling
Read the Fine Print
Educational Use
Rating
0.0 stars

Students come to see the exponential trend demonstrated through the changing temperatures measured while heating and cooling a beaker of water. This task is accomplished by first appealing to students' real-life heating and cooling experiences, and by showing an example exponential curve. After reviewing the basic principles of heat transfer, students make predictions about the heating and cooling curves of a beaker of tepid water in different environments. During a simple teacher demonstration/experiment, students gather temperature data while a beaker of tepid water cools in an ice water bath, and while it heats up in a hot water bath. They plot the data to create heating and cooling curves, which are recognized as having exponential trends, verifying Newton's result that the change in a sample's temperature is proportional to the difference between the sample's temperature and the temperature of the environment around it. Students apply and explore how their new knowledge may be applied to real-world engineering applications.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Karl Abdelnour
Nicole Abaid
Robert Eckhardt
Date Added:
09/18/2014
The Next Dimension
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this lesson is to teach students about the three dimensional Cartesian coordinate system. It is important for structural engineers to be confident graphing in 3D in order to be able to describe locations in space to fellow engineers.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Burnham
Date Added:
09/18/2014
The No Zone of Ozone
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the causes and effects of the Earth's ozone holes through discussion and an interactive simulation. In an associated literacy activity, students learn how to tell a story in order to make a complex topic (such as global warming or ozone holes) easier for a reader to grasp.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
Non-conventional Light Stable Isotope Geochemistry, Spring 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is designed for graduate students with an interest in using primary research literature to discuss and learn about current research around non-conventional light stable isotope geochemistry.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Shuhei Ono
Date Added:
01/01/2012
Nonlinear Dynamics I: Chaos, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to the theory and phenomenology of nonlinear dynamics and chaos in dissipative systems. Forced and parametric oscillators. Phase space. Periodic, quasiperiodic, and aperiodic flows. Sensitivity to initial conditions and strange attractors. Lorenz attractor. Period doubling, intermittency, and quasiperiodicity. Scaling and universality. Analysis of experimental data: Fourier transforms, Poincar, sections, fractal dimension, and Lyapunov exponents. Applications drawn from fluid dynamics, physics, geophysics, and chemistry.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lyubov Chumakova
Date Added:
01/01/2012
Normal Modes
Unrestricted Use
CC BY
Rating
0.0 stars

Play with a 1D or 2D system of coupled mass-spring oscillators. Vary the number of masses, set the initial conditions, and watch the system evolve. See the spectrum of normal modes for arbitrary motion. See longitudinal or transverse modes in the 1D system.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Jon Olson
Michael Dubson
Trish Loeblein
Date Added:
05/14/2012
The North (Wall) Star
Read the Fine Print
Educational Use
Rating
0.0 stars

Celestial navigation is the art and science of finding one's geographic position by means of astronomical observations, particularly by measuring altitudes of celestial objects sun, moon, planets or stars. This activity starts with a basic, but very important and useful, celestial measurement: measuring the altitude of Polaris (the North Star) or measuring the latitude.

Subject:
Applied Science
Engineering
Physical Geography
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
10/14/2015
Northward Ho!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create and use their own simple compasses, which are each made from a bowl of water, strong magnet, stick pin and Styrofoam peanuts. They learn how compasses work and about cardinal directions. They come to understand that the Earth's magnetic field has both horizontal and vertical components.

Subject:
Applied Science
Engineering
Physical Geography
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
10/14/2015
Not So Lost in Space
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers navigate satellites in orbit around the Earth and on their way to other planets in the solar system. In accompanying activities, they explore how ground-based tracking and onboard measurements are performed. Also provided is an overview of orbits and spacecraft trajectories from Earth to other planets, and how spacecraft are tracked from the ground using the Deep Space Network (DSN). DSN measurements are the primary means for navigating unmanned vehicles in space. Onboard spacecraft instruments might include optical sensors and an inertial measurement unit (IMU).

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Penny Axelrad
Date Added:
09/18/2014
Not So Neutral Views
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to acids and bases, and the environmental problem of acid rain. They explore ways to use indicators to distinguish between acids and bases. Students also conduct a simple experiment to model and discuss the harmful effects of acid rain on our living and non-living environment, as well as how engineers address acid rain. In an associated literacy activity, students learn how persuasive techniques are used to develop an argument, and create an environmental case study.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Case Study
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
Not So Simple
Read the Fine Print
Educational Use
Rating
0.0 stars

Students expand upon their understanding of simple machines with an introduction to compound machines. A compound machine a combination of two or more simple machines can affect work more than its individual components. Engineers who design compound machines aim to benefit society by lessening the amount of work that people exert for even common household tasks. This lesson encourages students to critically think about machine inventions and their role in our lives.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
Date Added:
09/18/2014
Nuclear Energy through a Virtual Field Trip
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about nuclear energy generation through a nuclear power plant virtual field trip that includes visiting four websites and watching a short video taken inside a nuclear power plant. They are guided by a handout that provides the URLs and questions to answer from their readings. They conclude with a class discussion to share their findings and reflections. It is recommended that students complete the associated activity, Chernobyl Empathy, before conducting this lesson; doing this assists students in gaining an understanding of how devastating nuclear meltdowns can be, which underscores the importance of careful engineering.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Ashley Martin
Dale Gaddis
Hannah Brooks
Lazar Trifunovic
Shay Marceau
Date Added:
04/26/2017
Nuclear Fission
Unrestricted Use
CC BY
Rating
0.0 stars

Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor! (Previously part of the Nuclear Physics simulation - now there are separate Alpha Decay and Nuclear Fission sims.)

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
John Blanco
Kathy Perkins
Noah Podolefsky
Ron LeMaster
Sam McKagan
Wendy Adams
Date Added:
07/19/2011
Nuclear Fission (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor! (Previously part of the Nuclear Physics simulation - now there are separate Alpha Decay and Nuclear Fission sims.)

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
John Blanco
Kathy Perkins
Noah Podolefsky
Ron LeMaster
Sam McKagan
Wendy Adams
Date Added:
07/02/2008