Updating search results...

Search Resources

2825 Results

View
Selected filters:
  • Applied Science
Dr. Sharon Nelson-Barber: Infusing Mainstream STEM Education With Indigenous Culture, Language, and Values
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

In the United States, approaches to science, technology, engineering, and math (STEM) instruction are aligned with English-speaking, White middle-class norms. STEM courses rarely reflect consideration for the unique backgrounds of Indigenous learners. Because of this devaluing of local cultural, linguistic, and community traditions, whole communities are left behind, resulting in learners’ exclusion from advanced educational and employment tracks.

Subject:
Applied Science
Material Type:
Reading
Author:
Dr. Sharon Nelson-Barber
Date Added:
06/26/2023
Drawing Designs in Detail
Read the Fine Print
Educational Use
Rating
0.0 stars

Students practice creating rudimentary detail drawings. They learn how engineers communicate the technical information about their designs using the basic components of detail drawings. They practice creating their own drawings of a three-dimensional block and a special LEGO piece, and then make 3D sketches of an unknown object using only the information provided in its detail drawing.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry
Brandi Briggs
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Drawing Magnetic Fields
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Drawings & Numbers: Five Centuries of Digital Design, Fall 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Seminar on a selected topic from Renaissance architecture. Requires original research and presentation of a report. The aim of this course is to highlight some technical aspects of the classical tradition in architecture that have so far received only sporadic attention. It is well known that quantification has always been an essential component of classical design: proportional systems in particular have been keenly investigated. But the actual technical tools whereby quantitative precision was conceived, represented, transmitted, and implemented in pre-modern architecture remain mostly unexplored. By showing that a dialectical relationship between architectural theory and data-processing technologies was as crucial in the past as it is today, this course hopes to promote a more historically aware understanding of the current computer-induced transformations in architectural design.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Geometry
Mathematics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Carpo, Mario
Date Added:
01/01/2002
Dream It, Build It, Launch It!
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This Super Lesson utilizes Project Based Learning to assist learners with designing, building, and testing flying contraptions as an introduction to Engineering. The goal of this project is to engage students in collaborative team work and to introduce students to the Science and Engineering Practices: Asking Questions and Defining Problems, Planning and Carrying Out Investigations, and Constructing Explanations and Designing Solutions.

We have offered this Super Lesson as an 8-week elective course, developing and strengthening student interest in applied Math and Science topics. It could also be offered within upper elementary or middle school Science and Math courses. In addition, each week’s topic could be used as a stand alone mini-lesson if time is limited. We have worked to include multiple options within this unit to make it accessible to both general education and special education programs, including recommendations for modifications and extensions.

Subject:
Applied Science
Material Type:
Activity/Lab
Interactive
Lesson Plan
Unit of Study
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Date Added:
06/30/2016
Dredging Engineering: Special Topics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In dredging, production estimating is carried out mainly with analytical physical models of the different dredging processes.
Slurry transport of settling slurries and cutting processes in sand, clay and rock are already covered in two other books by the author.
Other processes like hopper sedimentation and erosion, water jet fluidization, cutter head spillage, pump/pipeline dynamics and clamshell dredging are covered in this Special Topics Edition.
New topics may be added in the near future.

Subject:
Applied Science
Career and Technical Education
Engineering
Maritime Science
Material Type:
Textbook
Author:
S.A. Miedema
Date Added:
07/07/2021
Dredging Processes
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course focuses on three main dredging processes: the cutting of sand, clay and rock, the sedimentation process in hopper dredges and the breaching process

Subject:
Applied Science
Career and Technical Education
Engineering
Maritime Science
Material Type:
Activity/Lab
Assessment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
S.A. Miedema
Date Added:
02/15/2016
Dredging Pumps and Slurry Transport
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this course is to convey knowledge of the various physical processes associated with slurry handling and transport during dredging. This knowledge is needed for the design of dredging equipment and for planning efficient equipment operations. The various processes are discussed and theories and simulation models that describe the processes are presented and compared during the course. The course can be broken down into four elements: 1. Pumps and engines a. Pump characteristics and cavitation b. Influence of particles on pump characteristics. 2. Hydraulic transport in pipelines a. Two-phase (solid-liquid) flow through pipelines b. Newtonian slurries c. Non Newtonian slurries d. Inclined and long pipelines. 3. Pump and pipeline systems a. Operation point and areas b. Production factors. 4. Case studies

Subject:
Applied Science
Engineering
Material Type:
Case Study
Full Course
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. A.M. Talmon
Date Added:
07/14/2021
Dress for Success
Read the Fine Print
Educational Use
Rating
0.0 stars

In this design activity, students investigate materials engineering as it applies to weather and clothing. Teams design and analyze different combinations of materials for effectiveness in specific weather conditions. Analysis includes simulation of temperature, wind and wetness elements, as well as the functionality and durability of final prototypes.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Malinda Schaefer Zarske
Marissa Forbes
Date Added:
10/14/2015
Drifting Continents
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity is a teacher-led demonstration of continental drift and includes a math worksheet for students involving the calculation of continental drift over time. Students will understand what continental drift is, why it occurs, and how earthquakes occur because of it.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Drinking Water Treatment 2
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course deals with the design of drinking water treatment plants. We discuss theory and design exercises.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.ir. J.C. van Dijk
Date Added:
07/14/2021
Dripping Wet or Dry as a Bone?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a sponge and water model to explore the concept of relative humidity and create a percent scale.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Drugs quality control (Theoretical foundation and practical application)
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The Course book presents the basics of drugs quality control in accordance with regulatory documents (pharmacopoeia of Europe, USA, Japan, Russia) and new data from current scientific periodicals, monographs The features of the physical, spectral and chemical quality control of medicines according to the indicators «identification», «tests» and «assay» are described in detail. Part II presents a workbook, which includes questions for the self-control of the material studied and tasks for a laboratory workshop. The Course book contains reference material and samples of pharmacopoeial articles. The Course book is designed for students of the specialty «Pharmacy».

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Textbook
Author:
Khatchaturyan M.A.
Morozova M.A.
Pleteneva T.V.
Uspenskaya E.V.
Date Added:
07/07/2021
Drum Roll Please
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams commit to a final decision on the location they recommend for safe underground cavern shelter for the citizens of Alabraska. They prepare and deliver final presentations to defend their final decisions to the class.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Dynamic Programming and Stochastic Control, Fall 2015
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course covers the basic models and solution techniques for problems of sequential decision making under uncertainty (stochastic control). We will consider optimal control of a dynamical system over both a finite and an infinite number of stages. This includes systems with finite or infinite state spaces, as well as perfectly or imperfectly observed systems. We will also discuss approximation methods for problems involving large state spaces. Applications of dynamic programming in a variety of fields will be covered in recitations.

Subject:
Applied Science
Information Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Dimitri Bertsekas
Date Added:
01/01/2011
Dynamic Systems and Control, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course addresses dynamic systems, i.e., systems that evolve with time. Typically these systems have inputs and outputs; it is of interest to understand how the input affects the output (or, vice-versa, what inputs should be given to generate a desired output). In particular, we will concentrate on systems that can be modeled by Ordinary Differential Equations (ODEs), and that satisfy certain linearity and time-invariance conditions. We will analyze the response of these systems to inputs and initial conditions. It is of particular interest to analyze systems obtained as interconnections (e.g., feedback) of two or more other systems. We will learn how to design (control) systems that ensure desirable properties (e.g., stability, performance) of the interconnection with a given dynamic system.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Dahleh, Munther
Frazzoli, Emilio
Date Added:
01/01/2011
Dynamics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Momentum principles and energy principles. Lagrange's equations, Hamilton's principle. Applications to mechanical systems including gyroscopic effects. Study of steady motions and nature of small deviations therefrom. Natural modes and natural frequencies for continuous and lumped parameter systems. Forced vibrations. Dynamic stability theory. Causes of instability. This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Haller, George
Date Added:
01/01/2004
Dynamics and Control II, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Upon successful completion of this course, students will be able to: * Create lumped parameter models (expressed as ODEs) of simple dynamic systems in the electrical and mechanical energy domains * Make quantitative estimates of model parameters from experimental measurements * Obtain the time-domain response of linear systems to initial conditions and/or common forcing functions (specifically; impulse, step and ramp input) by both analytical and computational methods * Obtain the frequency-domain response of linear systems to sinusoidal inputs * Compensate the transient response of dynamic systems using feedback techniques * Design, implement and test an active control system to achieve a desired performance measureMastery of these topics will be assessed via homework, quizzes/exams, and lab assignments.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Rowell, Derek
Date Added:
01/01/2008
Dynamics and Vibration (13.013J), Fall 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to dynamics and vibration of lumped-parameter models of mechanical systems. Three-dimensional particle kinematics. Force-momentum formulation for systems of particles and for rigid bodies (direct method). Newton-Euler equations. Work-enery (variational) formulation for systems particles and for rigid bodies (indirect method). Virtual displacements and work. Lagrange's equations for systems of particles and for rigid bodies. Linearization of equations of motion. Linear stability analysis of mechanical systems. Free and forced vibration of linear damped lumped parameter multi-degree of freedom models of mechanical systems. Application to the design of ocean and civil engineering structures such as tension leg platforms.

Subject:
Applied Science
Environmental Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Patrikalakis, Nicholas
Date Added:
01/01/2002
Dynamics of Nonlinear Systems, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to nonlinear deterministic dynamical systems. Nonlinear ordinary differential equations. Planar autonomous systems. Fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma. Stability of equilibria by Lyapunov's first and second methods. Feedback linearization. Application to nonlinear circuits and control systems. Alternate years. Description from course website: This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Megretski, Alexandre
Date Added:
01/01/2003