Updating search results...

Search Resources

865 Results

View
Selected filters:
  • Life Science
Stress, Strain and Hooke's Law
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to Hooke's law as well as stress-strain relationships. First they learn the governing equations, then they work through several example problems, first individually, then as a class. Through the lesson's two-part associated activity, students 1) explore Hooke's law by experimentally determining an unknown spring constant, and then 2) apply what they've learned to create a strain graph depicting a tumor using Microsoft Excel®. After the activities, the lesson concludes with a stress-strain quiz to assess each student's comprehension of the concepts.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luke Diamond
Date Added:
09/18/2014
The Stress That You Apply
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about contact stress and its applications in engineering. They are introduced to the concept of heavy loads, such as buildings, elephants, people and traffic, and learn how those heavy loads apply contact stress. Through the analysis of their own footprints, students determine their contact stress.

Subject:
Applied Science
Ecology
Engineering
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eduardo Suescun
Janet Yowell
Date Added:
09/18/2014
Stretching DNA
Unrestricted Use
CC BY
Rating
0.0 stars

Explore stretching just a single strand of DNA using optical tweezers or fluid flow. Experiment with the forces involved and measure the relationship between the stretched DNA length and the force required to keep it stretched. Is DNA more like a rope or like a spring?

Subject:
Genetics
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Meredith Betterton
Mike Dubson
Tom Perkins
Wendy Adams
Date Added:
12/01/2007
Stretching DNA (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Explore stretching just a single strand of DNA using optical tweezers or fluid flow. Experiment with the forces involved and measure the relationship between the stretched DNA length and the force required to keep it stretched. Is DNA more like a rope or like a spring?

Subject:
Genetics
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Meredith Betterton
Michael Dubson
Thomas Perkins
Wendy Adams
Date Added:
12/01/2007
The Strongest Pump of All
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson the students will learn how the heart functions. Students will be introduced to the concept of action potential generation. The lesson will explain how action potential generation causes the electrical current that causes muscle contraction in the heart. Students will be introduced to the basic electrical signal generated by the heart; P, QRS, and T waves. The lesson will approach the heart from an engineering standpoint and encourage students to design ways to improve heart function. Students will also learn the basic steps of the engineering design process.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Crawford
Katherine Murray
Leyf Peirce
Mark Remaly
Shayn Peirce
Date Added:
09/18/2014
A Student's Guide to Tropical Marine Biology
Unrestricted Use
CC BY
Rating
0.0 stars

A Student’s Guide to Tropical Marine Biology is written entirely by students enrolled in the Keene State College Tropical Marine Biology course taught by Dr. Karen Cangialosi. Our goal was to investigate three main aspects of tropical marine biology: understanding the system, identifying problems, and evaluating solutions. Each of the sections contains chapters that utilize openly licensed material and images, and are rich with hyperlinks to other sources. Some of the most pressing tropical marine ecosystem issues are broken up into five sections: Coral Reefs and Diversity, Common Fishes to the Coral Reef, Environmental Threats, Reef Conservation, and Major Marine Phyla. These sections are not mutually exclusive; repetition in some content between chapters is intentional as we expect that users may not read the whole book. This work represents a unique collaborative process with many students across semesters authoring and editing, and therefore reflects the interests and intentions of a broad range of students, not one person’s ideas. This collaboration began with contributions from KSC students in the 2017 semester and includes work from the 2019 class, as well as new content and editorial work from 2017 & 2019 alumni. We look forward to future editions of this book. Enjoy exploring the rainforests of the sea through our collaborative project and please share with those who care!

Subject:
Biology
Life Science
Oceanography
Physical Science
Material Type:
Full Course
Author:
Alana Olendorf
Allie Tolles
Andrew Fuhs
Audrey Boraski
Bryce Chounard
Christian Paparazzo
Devon Audibert
Emily Michaeles
Emma Verville
Haley Fantasia
Haley Zanga
Jaime Marsh
Jason Charbonneau
Jennifer Rosado
Jessica Comeau
Maddi Ouellette
Malisa Rai
Marisa Benjamin
Mary Swain
Melissa Wydra
Morgan Tupper
Sarah Larsen
Simone McEwan
Suki Graham
Tim Brodeur
Will Trautmann
Date Added:
07/07/2021
Studies in Poetry - British Poetry and the Sciences of the Mind, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Extensive reading of works by a few major poets. Emphasizes the evolution of each poet's work and the questions of poetic influence and literary tradition. Instruction and practice in oral and written communication. Topic for Fall: Does Poetry Matter? Topic for Spring: Gender and Lyric Poetry.

Subject:
Anatomy/Physiology
Arts and Humanities
Life Science
Literature
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Jackson, Noel
Date Added:
01/01/2004
Studying Evolution with Digital Organisms
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe natural selection in action and investigate the underlying mechanism, including random mutation and differential fitness based on environmental characteristics. They do this through use of the free AVIDA-ED digital evolution software application.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Louise Mead
Robert Pennock
Wendy Johnson
Date Added:
09/18/2014
Suit Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about providing healthcare in a global setting and the importance of wearing protective equipment when treating patients with infectious diseases like Ebola. They learn about biohazard suits, heat transfer through conduction and convection and the engineering design cycle. Student teams design, create and test (and improve) their own Ebola biohazard suit prototypes that cover one arm and hand, including a ventilation system to cool the inside of the suit.

Subject:
Biology
Career and Technical Education
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Fleishman
Leyf Starling
Michaela Rikard
Date Added:
07/07/2021
Survey of Biology (BIOL 100)
Unrestricted Use
CC BY
Rating
0.0 stars

This course will introduce you to a general overview of the biological world. Important concepts will be reinforced and expanded upon through completion of weekly laboratory activities and homework assignments. Upon successful conclusion of the course, students will be able to do the following: Describe the nature of science, including its methods and its limitations; Describe the basic methodology of doing science and the scientific method; Use the scientific method to study everyday situations as well as in laboratory/field investigations; Identify, describe, and explain at a rudimentary level and present examples of, the characteristics common to all living things; Explain that living organisms are composed of molecules which interact in a variety of different chemical reactions necessary to sustain life; Explain that living organisms are comprised of one or more cells and are classified as prokaryotic or eukaryotic based on cellular characteristics; Describe the hereditary information possessed by living and explain how that information determines the cellular characteristics and functions (including basic Mendelian genetics); Explain and describe, with examples, the diversity of life, at different levels (basic molecular to ecological) and how it is hierarchically organized into systems; Explain how evolution by natural selection occurs, and describe the evidence that supports the theory of evolution; and more.

Subject:
Biology
Life Science
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
07/14/2021
Survival in Extreme Conditions: The Bacterial Stress Response, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Bacteria survive in almost all environments on Earth, including some considered extremely harsh. From the steaming hot springs of Yellowstone to the frozen tundra of the arctic to the barren deserts of Chile, microbes have been found thriving. Their tenacity to survive in such extreme and varied conditions allows them to play fundamental roles in global nutrient cycling. Microbes also cause a wide range of human diseases and can survive inhospitable conditions found in the human body. In this course, we will examine the molecular systems that bacteria use to adapt to changes in their environment. We will consider stresses commonly encountered, such as starvation, oxidative stress and heat shock, and also discuss how the adaptive responses affect the evolution of the bacteria. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Peterson, Celeste
Date Added:
01/01/2010
Survival of the Fittest: Competing Evolved & Engineered Digital Organisms
Read the Fine Print
Educational Use
Rating
0.0 stars

Students engineer and evolve digital organisms with the challenge to produce organisms with the highest fitness values in a particular environment. They do this through use of the free Avida-ED digital evolution software application. The resulting organisms compete against each other in the same environment and students learn the benefits of applying the principles of natural selection to solve engineering design problems.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeff Farell
Wendy Johnson
Date Added:
09/18/2014
Sustainability Foundations: Plants, Animals, and Our World
Restricted Use
Copyright Restricted
Rating
0.0 stars

Plants, Animals & Our Planet will uses science and social studies content to build an understanding that we are all responsible for our planet. Learners explore environmental systems and understand how human health, climate change, global resource constraints, and animal welfare are all interconnected

Subject:
Life Science
Material Type:
Full Course
Provider:
EVERFI
Date Added:
07/14/2021
Sustainable Design and Technology Research Workshop, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This workshop investigates the current state of sustainability in regards to architecture, from the level of the tectonic detail to the urban environment. Current research and case studies will be investigated, and students will propose their own solutions as part of the final project.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Ecology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Glicksman, Leon R.
Date Added:
01/01/2004
Sustainable Economic Development, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the application of environmental and economic development planning, policy and management approaches to urban neighborhood community development. Through an applied service learning approach, the course requires students to prepare a sustainable development plan for a community-based non-profit organization. Through this client-based planning project, students will have the opportunity to test how sustainable development concepts and different economic and environmental planning approaches can be applied to advance specific community goals within the constraints of specific neighborhoods and community organizations.

Subject:
Economics
Life Science
Nutrition
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Seidman, Karl
Shutkin, William
Date Added:
01/01/2004
Synaptic Plasticity and Memory, from Molecules to Behavior, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course we will discover how innovative technologies combined with profound hypotheses have given rise to our current understanding of neuroscience. We will study both new and classical primary research papers with a focus on the plasticity between synapses in a brain structure called the hippocampus, which is believed to underlie the ability to create and retrieve certain classes of memories. We will discuss the basic electrical properties of neurons and how they fire. We will see how firing properties can change with experience, and we will study the biochemical basis of these changes. We will learn how molecular biology can be used to specifically change the biochemical properties of brain circuits, and we will see how these circuits form a representation of space giving rise to complex behaviors in living animals. A special emphasis will be given to understanding why specific experiments were done and how to design experiments that will answer the questions you have about the brain. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Arts and Humanities
Biology
Life Science
Literature
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kamsler, Ariel
Date Added:
01/01/2007
System Design and Analysis based on AD and Complexity Theories, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to axiomatic design. Theoretical basis for rational design. One-FR Design. Multi-FR design. System design. Software design. Product design. Materials and materials process design. Manufacturing system design. Complexities in design: time-independent real complexity, time-independent imaginary complexity, time-dependent combinatorial complexity, and time-dependent periodic complexity. Industrial case studies. This course studies what makes a good design and how one develops a good design. Students consider how the design of engineered systems (such as hardware, software, materials, and manufacturing systems) differ from the "design" of natural systems such as biological systems; discuss complexity and how one makes use of complexity theory to improve design; and discover how one uses axiomatic design theory (AD theory) in design of many different kinds of engineered systems. Questions are analyzed using Axiomatic Design Theory and Complexity Theory. Case studies are presented including the design of machines, tribological systems, materials, manufacturing systems, and recent inventions. Implications of AD and complexity theories on biological systems discussed.

Subject:
Biology
Career and Technical Education
Life Science
Manufacturing
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lee, Taesik
Suh, Nam
Date Added:
01/01/2005
Systems Biology, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to quantitative methods and modeling techniques to address key questions in modern biology. Overview of quantitative modeling techniques in evolutionary biology, molecular biology and genetics, cell biology and developmental biology. Description of key experiments that validate models. Specific topics include: Evolutionary biology: theoretical models for evolution, evolution in test tube, evolution experiments with viruses and bacteria, complexity and evolution; Molecular biology and genetics: protein design, bioinformatics and genomics, constructing and modeling of genetic networks, control theory and genetic networks; Cell biology: forces and motion, cell motility, signal transduction pathways, chemotaxis and pheromone response; Development biology: pattern formation, self-organization, and models of Drosophila development.

Subject:
Biology
Life Science
Physical Science
Physics
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Oudenaarden, Alexander van
Date Added:
01/01/2004
Systems Microbiology, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers introductory microbiology from a systems perspective, considering microbial diversity, population dynamics, and genomics. Emphasis is placed on the delicate balance between microbes and humans, and the changes that result in the emergence of infectious diseases and antimicrobial resistance. The case study approach covers such topics as vaccines, toxins, biodefense, and infections including Legionnaire‰ŰŞs disease, tuberculosis, Helicobacter pylori, and plague.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schauer, David
Date Added:
01/01/2006
Systems Perspectives on Industrial Ecology, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Quantitative techniques for life cycle analysis of the impacts of materials extraction, processing use, and recycling; and economic analysis of materials processing, products, and markets. Student teams undertake a major case study of automobile manufacturing using the latest methods of analysis and computer-based models of materials process.

Subject:
Career and Technical Education
Ecology
Life Science
Manufacturing
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kirchain, Randolph
Date Added:
01/01/2006