Updating search results...

Search Resources

865 Results

View
Selected filters:
  • Life Science
Seminar on Deep Engagement, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Innovation in expression -- as realized in media, tangible objects, and performance, and more -- generates new questions and new potentials for human engagement. When and how does expression engage us deeply? While "deep engagement" seems fundamental to the human psyche, it is hard to define, difficult to reliably design for, and hard to critically measure or assess. Are there principles we can articulate? Are there evaluation metrics we can use to insure quality of experience? Many personal stories confirm the hypothesis that once we experience deep engagement, it is a state we long for, remember, and want to repeat. We need to better understand these principles and innovate methods that can insure higher-quality products (artifacts, experiences, environments, performances, etc.) that appeal to a broad audience and that have lasting value over the long term.

Subject:
Anatomy/Physiology
Arts and Humanities
Career and Technical Education
Film and Music Production
Life Science
Performing Arts
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Breazeal, Cynthia
Davenport, Glorianna
Date Added:
01/01/2004
Separation Processes, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

General principles of separation by equilibrium and rate processes. Staged cascades. Applications to distillation, absorption, adsorption, and membrane processes. Phase equilibria and role of diffusion. 10.32 will be offered for 6 units starting spring 2004.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Dalzell, William
Date Added:
01/01/2005
Show Me the Genes
Read the Fine Print
Educational Use
Rating
0.0 stars

By this point in the unit, students have learned all the necessary information and conceptualized a design for how an optical biosensor could be used to detect a target strand of DNA associated with a cancer-causing gene as their solution to the unit's challenge question. Now student groups act as engineers again, using a poster format to communicate and prove the validity of the design. Successful posters include a description of refraction, explanations of refraction in a thin film, and the factors that can alter the interference pattern of a thin film. The posters culminate with an explanation of what is expected to be seen in a biosensing device of this type if it were coupled to a target molecule, proven with a specific example and illustrated with drawings and diagrams throughout. All the poster elements combine to prove the accuracy and viability of this method of gene detection. Together with its associated lesson, this activity functions as part of the summative assessment for this unit.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Simple Coulter Counter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build and use a very basic Coulter electric sensing zone particle counter to count an unknown number of particles in a sample of "paint" to determine if enough particles per ml of "paint" exist to meet a quality standard. In a lab experiment, student teams each build an apparatus and circuit, set up data acquisition equipment, make a salt-soap solution, test liquid flow in the apparatus, take data, and make graphs to count particles.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Skeletal System
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this unit, written for an honors anatomy and physiology class, students become familiar with the human skeletal system and answer the Challenge Question: When you get home from school, your mother grabs you, and you race to the hospital. Your grandmother fell and was rushed to the emergency room. The doctor tells your family your grandmother has a fractured hip, and she is referring her to an orthopedic specialist. The orthopedic doctor decides to perform a DEXA scan. The result show her BMD is -3.3. What would be a probable diagnosis to her condition? What are some possible causes of her condition? Should her daughter and granddaughter be worried about this condition, and if so, what are measures they could take to prevent this from happening to them?

Subject:
Applied Science
Engineering
Life Science
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Morgan R. Evans
Date Added:
09/18/2014
Skeletal System Overview
Read the Fine Print
Educational Use
Rating
0.0 stars

Students will learn about bone structure, bone development and growth, and bone functions. Later, students will apply this understanding to answer the Challenge Question presented in the "Fix the Hip" lesson and use the acquired learning to construct an informative brochure about osteoporosis and biomedical engineering contributions to this field.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Morgan Evans
Date Added:
09/18/2014
So What Is the Density?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students review what they know about the 20 major bones in the human body (names, shapes, functions, locations, as learned in the associated lesson) and the concept of density (mass per unit of volume). Then student pairs calculate the densities for different bones from a disarticulated human skeleton model of fabricated bones, making measurements via triple-beam balance (for mass) and water displacement (for volume). All groups share their results with the class in order to collectively determine the densities for every major bone in the body. This activity prepares students for the next activity, "Can It Support You? No Bones about It," during which they act as biomedical engineers and design artificial bones, which requires them to find materials of suitable density to perform as human body implants.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Michelle Gallagher
Terri Camesano
Date Added:
10/14/2015
Social Studies of Bioscience and Biotech, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Discusses social, ethical and clinical issues associated with the development of new biotechnologies and their integration into clinical practice. Basic scientists, clinicians, bioethicists, and social scientists present on four general topics: changing political economy of biotech research; problems associated with the adaption of new biotechnologies and findings from molecular biology for clinical settings; the ethical issues that emerge from clinical research and clinical use of new technologies; and the broader social ethics associated with investigations of population genetics and social problems. Use of cases and recent literature.

Subject:
Biology
Life Science
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fischer, Michael M.
Good, Byron
Good, Mary-Jo
Date Added:
01/01/2005
Soil Behavior, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Detailed study of soil properties with emphasis on interpretation of field and laboratory test data and their use in soft-ground construction engineering. Includes: consolidation and secondary compression; basic strength principles; stress-strain strength behavior of clays, emphasizing effects of sample disturbance, anisotropy, and strain rate; strength and compression of granular soils; and engineering properties of compacted soils. Some knowledge of field and laboratory testing assumed.

Subject:
Ecology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Jen, Lucy
Date Added:
01/01/2005
Soil Biosolarization: Using Food Waste and the Sun to Get Rid of Weeds in Soil
Read the Fine Print
Educational Use
Rating
0.0 stars

Over the course of three sessions, students act as agricultural engineers and learn about the sustainable pest control technique known as soil biosolarization in which organic waste is used to help eliminate pests during soil solarization instead of using toxic compounds like pesticides and fumigants. Student teams prepare seed starter pots using a source of microorganisms (soil or compost) and “organic waste” (such as oatmeal, a source of carbon for the microorganisms). They plant seeds (representing weed seeds) in the pots, add water and cover them with plastic wrap. At experiment end, students count the weed seedlings and assess the efficacy of the soil biosolarization technique in inactivating the weed seeds. An experiment-guiding handout and pre/post quizzes are provided.

Subject:
Biology
Career and Technical Education
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Jesús D. Fernández Bayo
Date Added:
07/07/2021
Sound for Sight
Read the Fine Print
Educational Use
Rating
0.0 stars

Echolocation is the ability to orient by transmitting sound and receiving echoes from objects in the environment. As a result of a Marco-Polo type activity and subsequent lesson, students learn basic concepts of echolocation. They use these concepts to understand how dolphins use echolocation to locate prey, escape predators, navigate their environment, such as avoiding gillnets set by commercial fishing vessels. Students will also learn that dolphin sounds are vibrations created by vocal organs, and that sound is a type of wave or signal that carries energy and information especially in the dolphin's case. Students will learn that a dolphin's sense of hearing is highly enhanced and better than that of human hearing. Students will also be introduced to the concept of by-catch Students will learn what happens to animals caught through by-catch and why.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Whitt
Angela Jiang
Aruna Venkatesan
Billyde Brown
Kim Goetze
Matt Nusnbaum
Mina Innes
Neera Desai
Tom Rose
Vicki Thayer
Date Added:
09/18/2014
Sound from Left or Right?
Read the Fine Print
Educational Use
Rating
0.0 stars

Why do humans have two ears? How do the properties of sound help with directional hearing? Students learn about directional hearing and how our brains determine the direction of sounds by the difference in time between arrival of sound waves at our right and left ears. Student pairs use experimental set-ups that include the headset portions of stethoscopes to investigate directional hearing by testing each other's ability to identify the direction from which sounds originate.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Marianne Catanh
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Special Studies in Urban Studies and Planning - The Cardener River Corridor Workshop, Fall 2001
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This landscape and environmental planning workshop investigates and propose a framework for the enhancement, development and preservation of the natural and cultural landscape of the Cardener River Corridor in Catalunya Spain. The workshop is carried out in conjunction with the Polytechnic University of Catalunya, and the Barcelona Provincial Council (DiputaciĚ_ de Barcelona).

Subject:
Applied Science
Architecture and Design
Ecology
Engineering
Environmental Science
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ben-Joseph
Ben-Joseph, Eran
Eran
Date Added:
01/01/2001
Special Topics: Genetics, Neurobiology, and Pathophysiology of Psychiatric Disorders, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An opportunity for graduate study of advanced subjects in Brain and Cognitive Sciences not included in other subject listings. The key topics covered in this course are Bipolar Disorder, Psychosis, Schizophrenia, Genetics of Psychiatric Disorder, DISC1, Ca++ Signaling, Neurogenesis and Depression, Lithium and GSK3 Hypothesis, Behavioral Assays, CREB in Addiction and Depressive Behaviors, The GABA System-I, The GABA System-II, The Glutamate Hypothesis of Schizophrenia, The Dopamine Pathway and DARPP32.

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Scolnick, Edward
Tsai, Li-Huei
Date Added:
01/01/2008
Splish, Splash, I was Takin' a Bath!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will explore the causes of water pollution and its effects on the environment through the use of models and scientific investigation. In the accompanying activities, they will investigate filtration and aeration processes as they are used for removing pollutants from water. Lastly, they will learn about the role of engineers in water treatment systems.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
Spring Away!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lab demonstrates Hooke's Law with the use of springs and masses. Students attempt to determine the proportionality constant, or k-value, for a spring. They do this by calculating the change in length of the spring as different masses are added to it. The concept of a spring's elastic limit is also introduced, and the students test to makes sure the spring's elastic limit has not been reached during their lab tests. After compiling their data, they attempt to find an average value of the spring's k-value by measuring the slopes between each of their data points. Then they apply what they've learned about springs to how engineers might use that knowledge in the design of a toy that enables kids to jump 2-3 feet in the air.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey Mckelvey
Date Added:
09/18/2014
Statistical Physics in Biology, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kardar, Mehran
Leonid Mirny
Date Added:
01/01/2005
Statistical Thermodynamics of Biomolecular Systems (BE.011J), Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, chemical potentials, equilibrium states, binding cooperativity, behavior of macromolecules in solution and at interfaces, and solvation. Example problems include protein structure, genomic analysis, single molecule biomechanics, and biomaterials.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Griffith, Linda
Hamad-Schifferli, Kim
Date Added:
01/01/2004
Stem Cells: A Cure or Disease?, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Have you ever considered going to a pharmacy to order some new cardiomyocytes (heart muscle cells) for your ailing heart? It might sound crazy, but recent developments in stem cell science have made this concept not so futuristic. In this course, we will explore the underlying biology behind the idea of using stem cells to treat disease, specifically analyzing the mechanisms that enable a single genome to encode multiple cell states ranging from neurons to fibroblasts to T cells. Overall, we hope to provide a comprehensive overview of this exciting new field of research and its clinical relevance. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bilodeau, Steve
Welstead, Grant
Date Added:
01/01/2010
Straining out the Dirt
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students build a water filter with activated carbon, cotton and other materials to remove chocolate powder from water.

Subject:
Applied Science
Ecology
Engineering
Environmental Science
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Janet Yowell
Malinda Schaefer
Matt Lundberg
Sharon D. Pérez-Suárez
Date Added:
09/18/2014