Updating search results...

Search Resources

865 Results

View
Selected filters:
  • Life Science
Peptides as Biological Signaling Molecules and Novel Drugs, Spring 2016
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How do we sense hunger? How do we sense pain? What causes growth in our bodies? How are we protected from pathogens? The answer to many of these questions involves small polymers of amino acids known as peptides. Peptides are broadly used as signal molecules for intercellular communication in prokaryotes, plants, fungi, and animals. Peptide signals in animals include vast numbers of peptide hormones, growth factors and neuropeptides. In this course, we will learn about molecular bases of peptide signaling. In addition, peptides potentially can be used as potent broad-spectrum antibiotics and hence might define novel therapeutic agents.

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mohammed Shabab
Date Added:
01/01/2016
Peripheral Vision Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore their peripheral vision by reading large letters on index cards. Then they repeat the experiment while looking through camera lenses, first a lens with a smaller focal length and then a lens with a larger focal length. Then they complete a worksheet and explain how the experiment helps them solve the challenge question introduced in lesson 1 of this unit.

Subject:
Applied Science
Engineering
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anna Goncharova
Date Added:
09/18/2014
Personalized Care: Prevention of Lifestyle Diseases
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This is a peer-reviewed chapter in an open access book, Personalized Medicine in Relation to Redox State, Diet and Lifestyle. Several diet-related conditions where personalized care can revolutionize treatment, control and prevention of lifestyle diseases are discussed (Type II diabetes, obesity, cardiovascular diseases, cancer, oral health and osteoporosis). This chapter serves as an introductory overview of the subject. The chapter is accurate, relevant and clear. It is a technical reading that is best suited to nurses, nutritionists and other allied health professionals at both the undergraduate and graduate level.

Subject:
Applied Science
Genetics
Health, Medicine and Nursing
Life Science
Nutrition
Material Type:
Reading
Author:
Shakir Ali
Tijani Saliju Shinkafi
Written By
Date Added:
12/07/2022
Perspectives in Biological Engineering, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This seminar-format course provides an in-depth presentation and discussion of how engineering and biological approaches can be combined to solve problems in science and technology, emphasizing integration of biological information and methodologies with engineering analysis, synthesis, and design. Emphasis is placed on molecular mechanisms underlying cellular processes, including signal transduction, gene expression networks, and functional responses.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lauffenburger, Douglas
Date Added:
01/01/2006
PhD Science K–2 from Great Minds
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

PhD Science Grade Levels K–2 is available as downloadable PDFs. The OER consists of Teacher Editions and student Science Logbooks for every module.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.

Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.

Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.

Subject:
Applied Science
Environmental Science
Life Science
Physical Science
Material Type:
Textbook
Provider:
Great Minds
Provider Set:
PhD Science
Date Added:
07/09/2021
PhD Science Level 1 Module 1: Survival
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

PhD Science Grade Levels K–2 is available as downloadable PDFs. The OER consists of the Teacher Edition and student Science Logbook.

Throughout the module, students study the anchor phenomenon, life at a pond, and build an answer to the Essential Question: How do pond plants and pond animals survive in their environment? As students learn about each new concept, they revisit and refine a model that represents how plants and animals survive in a pond environment. At the end of the module, students use their knowledge of the ways plants and animals survive to explain the anchor phenomenon, and they apply these concepts to a new context in an End-of-Module Assessment. Through these experiences, students develop an enduring understanding that plants and animals have body parts that function in ways that help the plants and animals survive in their environment. Students also develop the understanding that plants and animals of the same kind are recognizable as similar but can vary in many ways and that many animal parents engage in behaviors that help young offspring survive.

With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.

Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.

Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.

Subject:
Life Science
Material Type:
Textbook
Provider:
Great Minds
Provider Set:
PhD Science
Date Added:
07/09/2021
Pharmaceutical Research Design Problem
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this lesson and its associated activity, students explore the role of biomedical engineers working for pharmaceutical companies. First, students gain background knowledge about what biomedical engineers do, how to become a biomedical engineer, and the steps of the engineering design process. The goal is to introduce biomedical engineering as medical problem solving as well as highlight the importance of maintaining normal body chemistry. Students participate in the research phase of the design process as it relates to improving the design of a new prescription medication. During the research phase, engineers learn about topics by reading scholarly articles written by others, and students experience this process. Students draw on their research findings to participate in discussion and draw conclusions about the impact of medications on the human body.

Subject:
Applied Science
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Angela D. Kolonich
Date Added:
09/18/2014
Phonetics Workbook for Students of Communication Sciences and Disorder
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This workbook is designed to give students in communication sciences and disorders foundational knowledge in Phonetics. Students will learn to listen and transcribe the speech of typically developing speakers of Standard American English in the International Phonetic Alphabet (IPA). Students will also learn how to listen and transcribe the speech of individuals with common speech sound disorders (i.e., residual articulation disorders and phonological disorders). Students will also be introduced to the fundamentals of speech science and spectrograms as they pertain to speech sound production. Written by April M. Yorke, PhD, CCC-SLP with her students Alyssa Mahler, Carley Shermak, and Emily Sternad.

Subject:
Anatomy/Physiology
Applied Science
Health, Medicine and Nursing
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Cleveland State University
Author:
April M Yorke
Date Added:
07/07/2021
Photosynthesis: Life's Primary Energy Source
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers the process of photosynthesis and the related plant cell functions of transpiration and cellular respiration. Students will learn how engineers can use the natural process of photosynthesis as an exemplary model of a complex yet efficient process for converting solar energy to chemical energy or distributing water throughout a system.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Janet Yowell
Karen King
Date Added:
09/18/2014
Photosynthesis and Cellular Respiration at the Atomic Level
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the basic principles of electromicrobiology—the study of microorganisms’ electrical properties—and the potential that these microorganisms may have as a next-generation source of sustainable energy. They are introduced to one such promising source: microbial fuel cells (MFCs). Using the metabolisms of microbes to generate electrical current, MFCs can harvest bioelectricity, or energy, from the processes of photosynthesis and cellular respiration. Students learn about the basics of MFCs and how they function as well as the chemical processes of photosynthesis and cellular respiration

Subject:
Applied Science
Chemistry
Engineering
Life Science
Mathematics
Measurement and Data
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Kamryn Jenkins
Tuyen Duddles
Weiyang Yang
Wen Li
Date Added:
08/27/2018
Physiology of the Ear, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Physical and physiological mechanisms underlying the transduction and analysis of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders. Based primarily on reading and discussions of original research literature. Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders.

Subject:
Anatomy/Physiology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Guinan, John, Jr.
Date Added:
01/01/2004
Pill Dissolving Demo
Read the Fine Print
Educational Use
Rating
0.0 stars

In a class demonstration, the teacher places different pill types ("chalk" pill, gel pill, and gel tablet) into separate glass beakers of vinegar, representing human stomach acid. After 20-30 minutes, the pills dissolve. Students observe which dissolve the fastest, and discuss the remnants of the various pills. What they learn contributes to their ongoing objective to answer the challenge question presented in lesson 1 of this unit.

Subject:
Applied Science
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michelle Woods
Date Added:
09/18/2014
Plant Cycles: Photosynthesis & Transpiration
Read the Fine Print
Educational Use
Rating
0.0 stars

What do plants need? Students examine the effects of light and air on green plants, learning the processes of photosynthesis and transpiration. Student teams plant seeds, placing some in sunlight and others in darkness. They make predictions about the outcomes and record ongoing observations of the condition of the stems, leaves and roots. Then, several healthy plants are placed in glass jars with lids overnight. Condensation forms, illustrating the process of transpiration, or the release of moisture to the atmosphere by plants.

Subject:
Applied Science
Botany
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Planting Thoughts
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain an understanding of the parts of a plant, plant types and how they produce their own food from sunlight through photosynthesis. They also learn about transpiration, the process by which plants release moisture to the atmosphere. With this understanding, students test the effects of photosynthesis and transpiration by growing a plant from seed. They learn how plants play an important part in maintaining a balanced environment in which the living organisms of the Earth survive. This lesson is part of a series of six lessons in which students use their evolving understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.

Subject:
Applied Science
Botany
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Plants, Society, and the Environment (Open Course)
Unrestricted Use
CC BY
Rating
0.0 stars

This open course for Plants, Society, and the Environment was created under a Round Six ALG Textbook Transformation Grant. Topics include cell structure, photosynthesis, taxonomy, biomes, domestication, agriculture, and medicine.

Subject:
Botany
Life Science
Material Type:
Full Course
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Katie Bridges
Thomas Harnden
Date Added:
03/20/2018
Plants and Environmental Resources
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Earth contains a variety of plants to provide food, medicine and, most importantly, energy sources for humans. In this lesson, students will categorize plants by their components and shapes. Additionally, they will learn the mechanisms behind the making of medicines and bio-fuels. It is important that the students have prior knowledge of the plant cell structures and functions. The video duration is 21 minutes, during which the students will use skills such as classification and experimentation. The students must therefore be supplied with various samples of plants. In Arabic with English subtitles.

Subject:
Ecology
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Sara A. Alzahid
Date Added:
07/02/2021
The Plastisphere: Plastic Migration and Its Impacts
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the growing worldwide environmental problems that stem from plastic waste. What they learn about microplastics and the typical components of the U.S. water treatment process prepares them to conduct three engaging associated activities. During the lesson, students become more aware of the pervasiveness and value of plastic as well as the downstream pollution and health dangers. They learn how plastic materials don’t go away, but become microplastic pollution that accumulates in water resources as well as human and other animal bodies. They examine their own plastic use, focusing on what they discard daily, and think about better ways to produce or package those items to eliminate or reduce their likelihood of ending up as microplastic pollution. A concluding writing assignment reveals their depth of comprehension. The lesson is enhanced by arranging for a local water treatment plant representative to visit the class for Qs and As. In three associated activities, students design/test microplastic particle filtering methods for commercial products, create mini wastewater treatment plant working models that remove waste and reclaim resources from simulated wastewater, and design experiments to identify the impact of microplastics on micro-invertebrates.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
David Bennett
Sara Hettenbach
William Welch
Date Added:
06/01/2018
Pollination: Saying It with Flowers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson focuses on the process of pollination. The learning objectives include learning the anatomy and physiology of flowers, the ecology of pollination, and a focus on plants as essential players in the natural world. There are no prerequisites for the lesson. The lesson will take 1½ hours, or 2 class periods or more -- depending on the areas teachers want to spend more time on or how far in depth they want their students to go. Materials needed are colored modeling clay, 8 or more assorted fresh flowers or pictures of flowers, preferably native to the local ecosystem. Dissecting microscopes or magnifying glasses are great for examining the fresh flowers, but not necessary. Additionally, pictures of different subjects/objects amongst plants are needed for the last activity. Activities for the breaks include assessing student knowledge of flowers by model building, and examining flowers to determine and distinguish between the pollination anatomy of different flowers.

Subject:
Anatomy/Physiology
Ecology
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Naomi Volain
Date Added:
07/02/2021
Polluted Air = Polluted Lungs
Read the Fine Print
Educational Use
Rating
0.0 stars

To gain a better understanding of the roles and functions of components of the human respiratory system and our need for clean air, students construct model lungs that include a diaphragm and chest cavity. They see how air moving in and out of the lungs coincides with diaphragm movement. Then student teams design and build a prototype face mask pollution filter. They use their model lungs to evaluate their prototypes to design requirements.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jay Shah
Malinda Schaefer Zarske
Date Added:
10/14/2015