Students take part in a hypothetical scenario that challenges them to inform …
Students take part in a hypothetical scenario that challenges them to inform customers at a local restaurant of how their use and disposal of plastics relates/contributes to the Great Pacific garbage patch (GPGP). What students ultimately do is research information on the plastics pollution in the oceans and present that information as a short, eye-catching newsletter suitable to hand out to restaurant customers. This activity focuses on teaching students to conduct their own research on a science-technology related topic and present it in a compelling manner that includes citing source information without plagiarism. By doing this, students gain experience and skills with general online searching as well as word processing and written and visual communication.
In this lesson, students will investigate error. As shown in earlier activities …
In this lesson, students will investigate error. As shown in earlier activities from navigation lessons 1 through 3, without an understanding of how errors can affect your position, you cannot navigate well. Introducing accuracy and precision will develop these concepts further. Also, students will learn how computers can help in navigation. Often, the calculations needed to navigate accurately are time consuming and complex. By using the power of computers to do calculations and repetitive tasks, one can quickly see how changing parameters likes angles and distances and introducing errors will affect their overall result.
In this lesson, students learn how to determine location by triangulation. We …
In this lesson, students learn how to determine location by triangulation. We describe the process of triangulation and practice finding your location on a worksheet, in the classroom, and outdoors.
In this activity students practice measuring techniques by measuring different objects and …
In this activity students practice measuring techniques by measuring different objects and distances around the classroom. They practice using different scales of measurement in metric units and estimation.
This hands-on activity explores five different forms of erosion (chemical, water, wind, …
This hands-on activity explores five different forms of erosion (chemical, water, wind, glacier and temperature). Students rotate through stations and model each type of erosion on rocks, soils and minerals. The students record their observations and discuss the effects of erosion on the Earth's landscape. Students learn about how engineers are involved in the protection of landscapes and structures from erosion. Math problems are included to help students think about the effects of erosion in real-world scenarios.
Students learn how the greenhouse effect is related to global warming and …
Students learn how the greenhouse effect is related to global warming and how global warming impacts our planet, including global climate change. Extreme weather events, rising sea levels, and how we react to these changes are the main points of focus of this lesson.
GEM4 VisionGEM4 has brought together researchers and professionals in major institutions across …
GEM4 VisionGEM4 has brought together researchers and professionals in major institutions across the globe with distinctly different, but complementary, expertise and facilities to address significant problems at the intersections of select topics of engineering, life sciences, technology, medicine and public health.GEM4 creates new models for interactions across scientific disciplinary boundaries whereby problems spanning the range of fundamental science to clinical studies and public health can be addressed on a global scale through strategic international partnerships.Through initial focus areas in cell and molecular biomechanics, and environmental health, in the context of select human diseases, GEM4 creates a global forum for the definition and exploration of grand challenges and scientific studies, for the cross-fertilization of ideas among engineers, life scientists and medical professionals, and for the development of novel educational tools.GEM4 ActivitiesGEM4 enables the brokering of engineers, life scientists and medical professionals with shared facilities and joint students and post-doctoral fellows to tackle major problems in the context of human health and diseases that call for state-of-the-art experimental and computational tools in cell and molecular mechanics, biology and medicine. Broad examples of problems addressed include:infectious diseases such as malaria,cancer,cardiovascular diseases,biomechanical origins of inflammation.In each of these areas, the initial emphasis has included (but will not be limited to) molecular, subcellular and cellular mechanics applied to biomedicine, where a single investigator or institution is not likely to have the full spectrum of expertise, infrastructure or resources available to cover fundamental molecular science all the way to clinical studies and societal implications. Currently, twelve institutions in North America, Europe and Asia participate in this effort as Core institutions, focusing on mechanistic studies, as well as novel methods for diagnostics, vaccines or drug development and delivery.Funds have been raised to provide a structure for coordinated studies from major organizations under the umbrella of GEM4. These funds are being used for:organization of major symposia/conferences specifically targeted at the theme areas of the initiative,training grants for student fellowships for the partner institutions,summer schools to develop teaching materials,the exchange of students and researchers,operations of a central secretariat for handling the administrative and infrastructure details for such interactions,maintenance of a web site for dissemination of information.
Students learn about the engineering design process and how products may be …
Students learn about the engineering design process and how products may be reinvented to serve new purposes. Working in groups, students design a type of slime. After creating their slime, the teacher turns out the lights and the students see that the slime they made actually glows in the dark! The groups investigate how to take their new discoveries and apply them to industrial applications. Once they have determined a use for their glowing slime, each group must build/design and test their product outside of class. The groups then create advertisements (videos, brochures, performances, etc.) for their new product(s) or application(s), and present to the judges for review similar to a “Shark Tank” environment.
Student teams learn about engineering design of green fluorescent proteins (GFPs) and …
Student teams learn about engineering design of green fluorescent proteins (GFPs) and their use in medical research, including stem cell research. They simulate the use of GFPs by adding fluorescent dye to water and letting a flower or plant to transport the dye throughout its structure. Students apply their knowledge of GFPs to engineering applications in the medical, environmental and space exploration fields. Due to the fluorescing nature of the dye, plant life of any color, light or dark, can be used unlike dyes that can only be seen in visible light.
Students combine art, gaming culture and engineering by fabricating light-up patches to …
Students combine art, gaming culture and engineering by fabricating light-up patches to increase youngsters’ visibility at night. The open-ended project is presented as a hypothetical design challenge: Students are engineers who have been asked by a group of parents whose children go out Pokémon hunting at night to create glowing patches that they adhere to clothing or backpacks to help vehicle drivers see the kids in the dark. Student pairs create Pokémon character stencil designs cut from iron-on fabric patches, adding transparent layers for color. Placed over an EL (electroluminescent) panel that is connected to a battery pack, the stencils create glowing designs. Each team creates a circuit, which includes lengthening the EL panel wiring to make it easier to wear. Then they sew/adhere the patches onto hoodies, messenger bags, hats, pockets or other applications they dream up. The project concludes with team presentations as if to an audience of project clients. Keep the project simple by hand cutting and ironing/sewing, or use cutting machines, laser cutters and sewing machines, if available.
Students will answer the Challenge Question and use the acquired learning from …
Students will answer the Challenge Question and use the acquired learning from Lesson 1, "Fix the Hip Challenge" and Lesson 2, "Skeletal System Overview"to construct an informative brochure addressing osteoporosis and the role biomedical engineering plays in diagnosing and preventing this disease.
Students explore the use of wind power in the design, construction and …
Students explore the use of wind power in the design, construction and testing of "sail cars," which, in this case, are little wheeled carts with masts and sails that are powered by the moving air generated from a box fan. The scientific method is reviewed and reinforced with the use of controls and variables, and the engineering design process is explored. The focus of the activity is on renewable energy, as well as the design, testing and redesign of small cars made from household materials. The activity (and an extension worksheet) includes the use of kinematic equations using distance, time traveled and speed to enforce exponents and decimals.
Students explore the effects of regional geology on bridge foundation, including the …
Students explore the effects of regional geology on bridge foundation, including the variety of soil conditions found beneath foundations. They learn about shallow and deep foundations, as well as the concepts of bearing pressure and settlement.
Using plastic straws, wire, batteries and iron nails, student teams build and …
Using plastic straws, wire, batteries and iron nails, student teams build and test two versions of electromagnets one with and one without an iron nail at its core. They test each magnet's ability pick up loose staples, which reveals the importance of an iron core to the magnet's strength. Students also learn about the prevalence and importance of electromagnets in their everyday lives.
This lesson introduces students to the concepts of air pollution and technologies …
This lesson introduces students to the concepts of air pollution and technologies that have been developed by engineers to reduce air pollution. Students develop an understanding of visible air pollutants with an incomplete combustion demonstration, a "smog in a jar" demonstration, construction of simple particulate matter collectors and by exploring engineering roles related to air pollution. Next, students develop awareness and understanding of the daily air quality and trends in air quality using the Air Quality Index (AQI) listed in the newspaper. Finally, students build and observe a variety of simple models in order to develop an understanding of how engineers use these technologies to clean up and prevent air pollution.
Students learn about energy flow in food webs, including the roles of …
Students learn about energy flow in food webs, including the roles of the sun, producers, consumers and decomposers in the energy cycle. They model a food web and create diagrams of food webs using their own drawings and/or images from nature or wildlife magazines. Students investigate the links between the sun, plants and animals, building their understanding of the web of nutrient dependency and energy transfer.
Students learn about energy and nutrient flow in various biosphere climates and …
Students learn about energy and nutrient flow in various biosphere climates and environments. They learn about herbivores, carnivores, omnivores, food chains and food webs, seeing the interdependence between producers, consumers and decomposers. Students are introduced to the roles of the hydrologic (water), carbon, and nitrogen cycles in sustaining the worlds' ecosystems so living organisms survive. This lesson is part of a series of six lessons in which students use their growing understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.
Students gain an understanding of the difference between electrical conductors and insulators, …
Students gain an understanding of the difference between electrical conductors and insulators, and experience recognizing a conductor by its material properties. In a hands-on activity, students build a conductivity tester to determine whether different objects are conductors or insulators. In another activity, students use their understanding of electrical properties to choose appropriate materials to design and build their own basic circuit switch.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.