Updating search results...

Search Resources

103 Results

View
Selected filters:
  • Atmospheric Science
Model Greenhouses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the advantages and disadvantages of the greenhouse effect. They construct their own miniature greenhouses and explore how their designs take advantage of heat transfer processes to create controlled environments. They record and graph measurements, comparing the greenhouse indoor and outdoor temperatures over time. Students are also introduced to global issues such as greenhouse gas emissions and their relationship to global warming.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Naturally Disastrous
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to natural disasters, and learn the difference between natural hazards and natural disasters. They discover the many types of natural hazards avalanche, earthquake, flood, forest fire, hurricane, landslide, thunderstorm, tornado, tsunami and volcano as well as specific examples of natural disasters. Students also explore why understanding these natural events is important to engineers and everyone's survival on our planet.

Subject:
Applied Science
Atmospheric Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoffrey Hill
Malinda Schaefer Zarske
Date Added:
09/18/2014
The No Zone of Ozone
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the causes and effects of the Earth's ozone holes through discussion and an interactive simulation. In an associated literacy activity, students learn how to tell a story in order to make a complex topic (such as global warming or ozone holes) easier for a reader to grasp.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
Ocean Currents and Sea Surface Temperature
Read the Fine Print
Educational Use
Rating
0.0 stars

This interactive tool allows students to gather data using My NASA Data microsets to investigate how differential heating of Earth results in circulation patterns in the oceans and the atmosphere that globally distribute the heat. They examine the relationship between the rotation of Earth and the circular motions of ocean currents and air. Students also make predictions based on the data to concerns about global climate change. They begin by examining the temperature of ocean’s surface currents and ocean surface winds. These currents, driven by the wind, mark the movement of surface heating as monitored by satellites. Students explore the link between 1) ocean temperatures and currents, 2) uneven heating and rotation of Earth, 3) resulting climate and weather patterns, and 4) projected impacts of climate change (global warming). Using the Live Access Server, students can select data sets for various elements for different regions of the globe, at different times of the year, and for multiple years. The information is provided in maps or graphs which can be saved for future reference. Some of the data sets accessed for this lesson include Sea Surface Temperature, Cloud Coverage, and Sea Level Height for this lesson. The lesson provides directions for accessing the data as well as questions to guide discussion and learning. The estimated time for completing the activity is 50 minutes. Inclusion of the Extension activities could broaden the scope of the lesson to several days in length. Links to informative maps and text such as the deep ocean conveyor belt, upwelling, and coastal fog as needed to answer questions in the extension activities are included.

Subject:
Atmospheric Science
Physical Science
Material Type:
Lecture
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
07/07/2021
Petrology, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Surveys the distribution, chemical composition, and mineral associations in rocks of the earth's crust and upper mantle, and establishes its relation to tectonic environment. Emphasis is on the use of chemistry and physics to interpret rock forming processes. Topics include: dynamics of crust and mantle melting as preserved in the chemical composition of igneous rocks and minerals, the long-term record of global climate change as preserved in the minerals of sedimentary rocks, and the time-temperature-depth record preserved in minerals of metamorphosed crustal rocks.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Grove, Timothy L.
Date Added:
01/01/2005
Phase Transitions in the Earth's Interior, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course discusses phase transitions in Earth's interior. Phase transitions in Earth materials at high pressures and temperatures cause the seismic discontinuities and affect the convections in the Earth's interior. On the other hand, they enable us to constrain temperature and chemical compositions in the Earth's interior. However, among many known phase transitions in mineral physics, only a few have been investigated in seismology and geodynamics. This course reviews important papers about phase transitions in mantle and core materials.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Shim, Sang-heon
Date Added:
01/02/2009
Pollution Solutions
Read the Fine Print
Educational Use
Rating
0.0 stars

To develop an understanding of modern industrial technologies that clean up and prevent air pollution, students build and observe a variety of simple models of engineering pollutant recovery methods: scrubber, electrostatic precipitator, cyclone and baghouse. In an associated literacy activity, students become more aware of global environmental problems and play a part in their solution by writing environmental action campaign letters.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Benjamin S. Terry
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
Prediction and Predictability in the Atmosphere and Oceans, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Forecasting is the ultimate form of model validation. But even if a perfect model is in hand, imperfect forecasts are likely. This course will cover the factors that limit our ability to produce good forecasts, will show how the quality of forecasts can be gauged a priori (predicting our ability to predict!), and will cover the state of the art in operational atmosphere and ocean forecasting systems.

Subject:
Atmospheric Science
Education
Mathematics
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hansen, James
Hansen, Jim
Date Added:
01/01/2003
Quantifying Uncertainty, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The ability to quantify the uncertainty in our models of nature is fundamental to many inference problems in Science and Engineering. In this course, we study advanced methods to represent, sample, update and propagate uncertainty. This is a "hands on" course: Methodology will be coupled with applications. The course will include lectures, invited talks, discussions, reviews and projects and will meet once a week to discuss a method and its applications.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sai Ravela
Date Added:
01/01/2012
Quasi-Balanced Circulations in Oceans and Atmospheres, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the students to dynamics of large-scale circulations in oceans and atmospheres. Basic concepts include mass and momentum conservation, hydrostatic and geostrophic balance, and pressure and other vertical coordinates. It covers the topics of fundamental conservation and balance principles for large-scale flow, generation and dissipation of quasi-balanced eddies, as well as equilibrated quasi-balanced systems. Examples of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments can be found in the accompaniment laboratory course 12.804, Large-scale Flow Dynamics Lab.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Emanuel, Kerry
Date Added:
01/01/2009
Radon Research in Multidisciplines: A Review, January (IAP) 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Laboratory or field work in earth, atmospheric, and planetary sciences. To be arranged with department faculty. Consult with department Education Office. This course introduces fundamentals of radon physics, geology, radiation biology; provides hands on experience of measurement of radon in MIT environments, and discusses current radon research in the fields of geology, environment, building and construction, medicine and health physics.

Subject:
Atmospheric Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Pillalamarri, Ila
Date Added:
01/01/2007
A Recipe for Air
Read the Fine Print
Educational Use
Rating
0.0 stars

Why do we care about air? Breathe in, breathe out, breathe in... most, if not all, humans do this automatically. Do we really know what is in the air we breathe? In this activity, students use M&M(TM) candies to create pie graphs that show their understanding of the composition of air. They discuss why knowing this information is important to engineers and how engineers use this information to improve technology to better care for our planet.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Remote Learning Resources - Setting Argreements
Unrestricted Use
CC BY
Rating
0.0 stars

In this document, we offer suggestions for developing and maintaining engagement agreements that promote safe student-driven learning experiences in remote learning environments. Remote learning environments might be synchronous experiences enhanced by technology that allows educators and learners to see and talk with each other, asynchronous communications that may or may not be aided by technology, or somewhere in between. When technology is used in remote learning, there will be variation in the skill and comfort level among teachers and students. Whatever approach you use for digital technology, be aware of your district and school policies in selecting tools to use.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Engineering
Environmental Science
Environmental Studies
Geology
Life Science
Physical Science
Material Type:
Primary Source
Provider:
OpenSciEd
Author:
OpenSciEd
Date Added:
07/02/2021
Seminar in Geophysics: Thermal and Chemical Evolution of the Earth, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main objective of this cross disciplinary course is to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data.

Subject:
Atmospheric Science
Geology
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Van Der Hilst, Robert
Date Added:
01/01/2005
Sensing Air Pollution
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about electricity and air pollution while building devices to measure volatile organic compounds (VOC) by attaching VOC sensors to prototyping boards. In the second part of the activity, students evaluate the impact of various indoor air pollutants using the devices they made.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Berkeley Almand
Mike Hannigan
Date Added:
09/18/2014
Stormy Skies
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn that wind and storms can form at the boundaries of interacting high and low pressure air masses. They learn the distinguishing features of the four main types of weather fronts (warm fronts, cold fronts, stationary fronts and occluded fronts) and how those fronts are depicted on a surface weather analysis, or weather map. Students also learn several different ways that engineers help with storm prediction, analysis and protection.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Malinda Schaefer Zarske
Marissa Forbes
Date Added:
09/18/2014
Strange Bedfellows: Science and Environmental Policy, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

12.103 explores the role of scientific knowledge, discovery, method, and argument in environmental policymaking from both idealistic and realistic perspectives. The course will use case studies of science-intensive environmental controversies to study how science was used and abused in the policymaking process. Case studies include: global warming, biodiversity loss, and nuclear waste disposal siting. Subject includes intensive practice in the writing and presentation of "position statements" on environmental science issues.

Subject:
Applied Science
Atmospheric Science
Environmental Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hodges, Kip
Date Added:
01/01/2005
Structural Geology, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces mechanics of rock deformation. Discusses recognition, interpretation, and mechanics of faults, folds, structural features of igneous and metamorphic rocks, and superposed deformations. Introduces regional structural geology and tectonics. Laboratory includes techniques of structural analysis, recognition and interpretation of structures on geologic maps, and construction of interpretive cross sections. Structural geology is the study of processes and products of rock deformation. This course introduces the techniques of structural geology through a survey of the mechanics of rock deformation, a survey of the features and geometries of faults and folds, and techniques of strain analysis. Regional structural geology and tectonics are introduced. Class lectures are supplemented by lab exercises and demonstrations as well as field trips to local outcrops.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Burchfiel, B. Clark
Date Added:
01/01/2005
Structure and Dynamics of the CMB Region, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Core Mantle Boundary (CMB) represents one of the most important physical and chemical discontinuities of the deep Earth as it separates the solid state, convective lower mantle from the liquid outer core. In this seminar course, we will examine our current understanding of the CMB region from integrated seismological, mineral physics and geodynamical perspectives. Instructors will introduce state-of-the-art methodologies that are employed to characterize the CMB region and relevant papers will be discussed in class. Topics will include CMB detection and topography, D'' anisotropy, seismic velocity anomalies (e.g., ultra-low velocity zones), temperature, chemical reactions, phase relations, and mineral fabrications at the core-mantle boundary. These results will be integrated to address the CMB's fundamental role in both mantle and core dynamics.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Rondenay, Stephane
Date Added:
01/01/2004
Structure of Earth Materials, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Provides a comprehensive introduction to crystalline structure, crystal chemistry, and bonding in rock-forming minerals. Introduces the theory relating crystal structure and crystal symmetry to physical properties such as refractive index, elastic modulus, and seismic velocity. Surveys the distribution of silicate, oxide, and metallic minerals in the interiors and on the surfaces of planets, and discusses the processes that led to their formation.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Evans, J
Grove, Timothy L.
Date Added:
01/01/2004