Updating search results...

Search Resources

508 Results

View
Selected filters:
  • Biology
Nano-life: An Introduction to Virus Structure and Assembly, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Watson and Crick noted that the size of a viral genome was insufficient to encode a protein large enough to encapsidate it and reasoned, therefore that a virus shell must be composed of multiple, but identical subunits. Today, high resolution structures of virus capsids reveal the basis of this genetic economy as a highly symmetrical structure, much like a geodesic dome composed of protein subunits. Crystallographic structures and cryo-electron microscopy reconstructions combined with molecular data are beginning to reveal how these nano-structures are built. Topics covered in the course will include basic principles of virus structure and symmetry, capsid assembly, strategies for enclosing nucleic acid, proteins involved in entry and exit, and the life cycles of well understood pathogens such as HIV, influenza, polio, and Herpes. A review of cutting edge structural methods is also covered.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2005
Nanomechanics of Materials and Biomaterials, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microscopy, elasticity of single macromolecular chains, intermolecular interactions in polymers, dynamic force spectroscopy, biomolecular bond strength measurements, and molecular motors.

Subject:
Biology
Chemistry
Genetics
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ortiz, Christine
Date Added:
01/01/2007
The Needs of Living Things
Read the Fine Print
Educational Use
Rating
0.0 stars

Students watch video clips of animals and plants in their natural environments to determine what living things need to survive. They will then complete an illustration of their own real or imagined plant or animal fulfilling one or more of their needs for survival, within their natural environment. While this lesson does a good job explaining how animals meet their needs through their environments, additional lessons and experiences with plants would need to be provided in order to meet the full standard.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
07/07/2021
Neural Plasticity in Learning and Development, Spring 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Roles of neural plasticity in learning and memory and in development of invertebrates and mammals. An in-depth critical analysis of current literature of molecular, cellular, genetic, electrophysiological, and behavioral studies. Discussion of original papers supplemented by introductory lectures.

Subject:
Biology
Life Science
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Miller, Earl Keith
Date Added:
01/01/2002
Neurology, Neuropsychology, and Neurobiology of Aging, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Lectures and discussions explore the clinical, behavioral, and molecular aspects of brain aging processes in humans. Topics include: loss of memory and other cognitive abilitites in normal aging; neurodegenerative conditions such as Parkinson's and Alzheimer's diseases. Based on lectures, readings taken from the primary literature, and discussions. Students are expected to present topics based on their readings. One written mid-term test and one final examination. Alternate years.

Subject:
Biology
Life Science
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Corkin, Suzanne
Ingram, Vernon
Date Added:
01/01/2005
Neuron
Unrestricted Use
CC BY
Rating
0.0 stars

Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they move across the neuron membrane.

Subject:
Biology
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
John Blanco
Katherine Perkins
Noah Podolefsky
Wendy Adams
Date Added:
10/01/2010
Non-coding RNAs: Junk or Critical Regulators in Health and Disease?, Spring 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Every time we scientists think that we have dissected the precise biological nature of a process, an incidental finding, a brilliantly designed experiment, or an unexpected result can turn our world upside down. Until recently thought by many to be cellular "junk" because they do not encode proteins, non-coding RNAs are gaining a growing recognition for their roles in the regulation of a wide scope of processes, ranging from embryogenesis and development to cancer and degenerative disorders. The aim of this class is to introduce the diversity of the RNA world, inhabited by microRNAs, lincRNAs, piRNAs, and many others. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Arts and Humanities
Biology
Life Science
Literature
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Nadya Dimitrova
Thales Papagiannakopoulos
Date Added:
01/01/2012
Noninvasive Imaging in Biology and Medicine, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Principles of tomographic imaging using ionizing and non-ionizing radiation, and ultrasound. Emphasis is placed on fundamental physics and mathematics involved in image formation, including basic interactions, data acquisition and reconstruction. Planar radiographic imaging, multi-dimensional tomography (X-ray CAT, PET, SPECT), ultrasound, and NMR imaging covered. 22.56J aims to give graduate students and advanced undergraduates background in the theory and application of noninvasive imaging methods to biology and medicine, with emphasis on neuroimaging. The course focuses on the modalities most frequently used in scientific research (X-ray CT, PET/SPECT, MRI, and optical imaging), and includes discussion of molecular imaging approaches used in conjunction with these scanning methods. Lectures by the professor will be supplemented by in-class discussions of problems in research, and hands-on demonstrations of imaging systems.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Jasanoff, Alan
Date Added:
01/01/2005
Oil: Clean It Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams create, test and improve oil spill cleanup kits, designing them to be inexpensive and accessible for homeowners to use or for big companies to give to individual workers to aid in personal home, community or corporate environmental oil cleanup. After deciding on a target user and scenario, teams conduct research and draw from an assortment of ordinary materials and supplies made available by the teacher. As a concluding gallery walk, each group presents its final prototype and summary poster to the rest of the class.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Norma Carmona
Date Added:
01/03/2018
Pedigrees and the Inheritance of Lactose Intolerance
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity students analyze a family’s pedigrees to make a claim based on evidence about mode of inheritance of a lactose intolerance trait, determine the most likely inheritance pattern of a trait, and analyze variations in DNA to make a claim about which variants are associated with specific traits. This activity serves as a supplement to the film Got Lactose? The Co-evolution of Genes and Culture (http://www.hhmi.org/biointeractive/making-fittest-got-lactase-co-evolution-genes-and-culture). The film shows a scientist as he tracks down the genetic changes associated with the ability to digest lactose as adults. A detailed teacher’s guide that includes curriculum connections, teaching tips, time requirements, answer key and a student guide can be downloaded at http://www.hhmi.org/biointeractive/pedigrees-and-inheritance-lactose-intolerance. Six supporting resource and two “click and learn” activities are also found on the link.

Subject:
Applied Science
Biology
Genetics
Health, Medicine and Nursing
Life Science
Material Type:
Lesson Plan
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
07/07/2021
Peptides as Biological Signaling Molecules and Novel Drugs, Spring 2016
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How do we sense hunger? How do we sense pain? What causes growth in our bodies? How are we protected from pathogens? The answer to many of these questions involves small polymers of amino acids known as peptides. Peptides are broadly used as signal molecules for intercellular communication in prokaryotes, plants, fungi, and animals. Peptide signals in animals include vast numbers of peptide hormones, growth factors and neuropeptides. In this course, we will learn about molecular bases of peptide signaling. In addition, peptides potentially can be used as potent broad-spectrum antibiotics and hence might define novel therapeutic agents.

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mohammed Shabab
Date Added:
01/01/2016
Perspectives in Biological Engineering, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This seminar-format course provides an in-depth presentation and discussion of how engineering and biological approaches can be combined to solve problems in science and technology, emphasizing integration of biological information and methodologies with engineering analysis, synthesis, and design. Emphasis is placed on molecular mechanisms underlying cellular processes, including signal transduction, gene expression networks, and functional responses.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lauffenburger, Douglas
Date Added:
01/01/2006
Photosynthesis: Life's Primary Energy Source
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers the process of photosynthesis and the related plant cell functions of transpiration and cellular respiration. Students will learn how engineers can use the natural process of photosynthesis as an exemplary model of a complex yet efficient process for converting solar energy to chemical energy or distributing water throughout a system.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Janet Yowell
Karen King
Date Added:
09/18/2014
Population Explosion
Read the Fine Print
Educational Use
Rating
0.0 stars

Population Explosion is a computer simulation which allows students to manipulate factors to see what happens over time to a population of sheep within an enclosed field. As the simulation runs, a graph shows the dynamic relationship between the sheep population size and their primary food resource, grass. Students can control factors such as initial number of sheep, grass regrowth rate, gain from food, and birthrate. Predation is represented by a “reaper” button which may also be controlled. The speed of the simulation can be set so that students can see more clearly what happens over time, or collect data more quickly, depending on how fast the simulation runs. Directions and a suggested simulation sequence are provided along with prompts so that students can pause and consider their results. A space within the simulation is provided for students to record observations and answers to the prompts. For each step in this suggested sequence, students take a snapshot of graphs they have created and store them in an album. At the end of the activity analysis questions help students connect the activity to wild populations. An optional extension exercise is also suggested.

Subject:
Biology
Ecology
Life Science
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
07/07/2021
Population Growth Curves
Read the Fine Print
Educational Use
Rating
0.0 stars

Using Avida-ED freeware, students control a few factors in an environment populated with digital organisms, and then compare how changing these factors affects population growth. They experiment by altering the environment size (similar to what is called carrying capacity, the maximum population size that an environment can normally sustain), the initial organism gestation rate, and the availability of resources. How systems function often depends on many different factors. By altering these factors one at a time, and observing the results, students are able to clearly see the effect of each one.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeff Farell
Jennifer Doherty
Wendy Johnson
Date Added:
09/18/2014
Population Growth in Yeasts
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson is the second of two that explore cellular respiration and population growth in yeasts. In the first lesson, students set up a simple way to indirectly observe and quantify the amount of respiration occurring in yeast-molasses cultures. Based on questions that arose during the first lesson and its associated activity, in this lesson students work in small groups to design experiments that will determine how environmental factors affect yeast population growth.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Principle and Practice of Human Pathology, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Subject provides a comprehensive overview of human pathology with emphasis on mechanisms of disease and modern diagnostic technologies. Topics include: general mechanisms of disease (inflammation, infection, immune injury, host response to foreign materials, transplantation, genetic disorders and neoplasia); pathology of lipids, enzymes, and molecular transporters; pathology of major organ systems; and review of diagnostic tools from invasive surgical pathology to non-invasive techniques such as optical spectroscopy, functional imaging, and molecular markers of disease. The objectives of this subject are achieved by a set of integrated lectures and laboratories, as well as a student-driven term project leading to a formal presentation on a medical, socioeconomic, or technological issue in human pathology.

Subject:
Anatomy/Physiology
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Badizadegan, Kamran
Date Added:
01/01/2003
Principles and Practice of Drug Development, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course serves as a description and critical assessment of the major issues and stages of developing a pharmaceutical or biopharmaceutical. Topics covered include drug discovery, preclinical development, clinical investigation, manufacturing and regulatory issues considered for small and large molecules, and economic and financial considerations of the drug development process. A multidisciplinary perspective is provided by the faculty, who represent clinical, life, and management sciences. Various industry guests also participate.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Charles Cooney, Stan Finkelstein, G.K. Raju, Anthony Sinskey
Date Added:
01/01/2013
Principles of Biology
Unrestricted Use
CC BY
Rating
0.0 stars

This textbook is designed specifically for Kansas State's Biology 198 Class. The course is taught using the studio approach and based on active learning. The studio manual contains all of the learning objectives for each class period and is the record of all student activities. Hence, this textbook is more of a reference tool while the studio manual is the learning tool.

Subject:
Biology
Life Science
Material Type:
Textbook
Provider:
New Prairie Press
Author:
Bruce Snyder
Christopher Herren
David Rintoul
Eva Horne
Martha Smith-Caldas
Robert Bear
Date Added:
01/24/2016