Updating search results...

Search Resources

112 Results

View
Selected filters:
  • CCSS.Math.Content.6.NS.B.3 - Fluently add, subtract, multiply, and divide multi-digit decimals usin...
  • CCSS.Math.Content.6.NS.B.3 - Fluently add, subtract, multiply, and divide multi-digit decimals usin...
Factors Affecting Friction
Read the Fine Print
Educational Use
Rating
0.0 stars

Based on what they have already learned about friction, students formulate hypotheses concerning the effects of weight and contact area on the amount of friction between two surfaces. In the Associated Activities (Does Weight Matter? and Does Area Matter?), students design and conduct simple experiments to test their hypotheses, using procedures similar to those used in the previous lesson (Discovering Friction). An analysis of their data will reveal the importance of weight to normal friction (the friction that occurs as a result of surface roughness) and the importance of surface area to the friction that occurs between smooth surfaces due to molecular attraction. Based on their data, students will also be able to calculate coefficients of friction for the materials tested, and compare these to published values for various materials.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Fairly Fundamental Facts about Forces and Structures
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the five fundamental loads: compression, tension, shear, bending and torsion. They learn about the different kinds of stress each force exerts on objects.

Subject:
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Douglas Prime
Date Added:
07/07/2021
The Force of Friction
Read the Fine Print
Educational Use
Rating
0.0 stars

In the first of two lessons of this curricular unit, students are introduced to the concept of friction as a force that impedes motion when two surfaces are in contact. Student teams use spring scales to drag objects, such as a ceramic coffee cup, along a table top or the floor, measuring the frictional force that exists between the moving object and the surface it slides on. By modifying the bottom surface of the object, students find out what kinds of surfaces generate more or less friction. They also discover that both static and kinetic friction are involved when an object initially at rest is caused to slide across a surface. In the second lesson of the unit, students design and conduct experiments to determine the effects of weight and surface area on friction. They discover that weight affects normal friction (the friction that results from surface roughness), but for very smooth surfaces, the friction due to molecular attraction is affected by contact area.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
GPS Scavenger Hunt
Read the Fine Print
Educational Use
Rating
0.0 stars

Students go on a GPS scavenger hunt. They use GPS receivers to find designated waypoints and report back on what they found. They compute distances between waypoints based on the latitude and longitude, and compare with the distance the receiver finds.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Matt Lundberg
Penny Axelrad
Date Added:
10/14/2015
Get Me Off This Planet
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this lesson is to teach the students about how a spacecraft gets from the surface of the Earth to Mars. The lesson first investigates rockets and how they are able to get us into space. Finally, the nature of an orbit is discussed as well as how orbits enable us to get from planet to planet specifically from Earth to Mars.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Gifts from Grandma, Variation 3
Unrestricted Use
CC BY
Rating
0.0 stars

The purpose of this task is to show three problems that are set in the same kind of context, but the first is a straightforward multiplication problem while the other two are the corresponding "How many groups?" and "How many in each group?" division problems.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Global Climate Change Lesson
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how the greenhouse effect is related to global warming and how global warming impacts our planet, including global climate change. Extreme weather events, rising sea levels, and how we react to these changes are the main points of focus of this lesson.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christie Chatterley
Denise W. Carlson
Janet Yowell
Karen King
Malinda Schaefer Zarske
Date Added:
09/18/2014
Grade 6 Module 2:  Arithmetic Operations Including Division of Fractions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Module 1, students used their existing understanding of multiplication and division as they began their study of ratios and rates.  In Module 2, students complete their understanding of the four operations as they study division of whole numbers, division by a fraction and operations on multi-digit decimals.  This expanded understanding serves to complete their study of the four operations with positive rational numbers, thereby preparing students for understanding, locating, and ordering negative rational numbers (Module 3) and algebraic expressions (Module 4).

**NOTE: The New York State Education Department shut down the EngageNY website in 2022. In order to maintain educators' access, nearly all resources have been uploaded to archive.org and the resource links above have been updated to reflect their new locations.**

Subject:
Mathematics
Numbers and Operations
Material Type:
Module
Provider:
New York State Education Department
Provider Set:
EngageNY
Date Added:
09/21/2013
Grading Congestion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct a model roadway with congestion and apply their knowledge of level of service (LOS) to assign a grade to the road conditions. The roadway is simply a track outlined with cones or ropes with a few students walking around it to mimic congestion. The remaining students employ both techniques of density and flow to classify the LOS of the track.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dayna Lee Martinez
Tapas K. Das
Date Added:
09/18/2014
The Great Gravity Escape
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use water balloons and a length of string to understand how the force of gravity between two objects and the velocity of a spacecraft can balance to form an orbit. They see that when the velocity becomes too great for gravity to hold the spacecraft in orbit, the object escapes the orbit and travels further away from the planet.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Timothy M. Dittrich
Date Added:
10/14/2015
Groundwater Detectives
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams locate a contaminant spill in a hypothetical site by measuring the pH of soil samples. Then they predict the direction of groundwater flow using mathematical modeling. They also use the engineering design process to come up with alternative treatments for the contaminated water.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
A Guide to Rain Garden Construction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a guide to rain garden construction in an activity that culminates the unit and pulls together what they have learned and prepared in materials during the three previous associated activities. They learn about the four vertical zones that make up a typical rain garden with the purpose to cultivate natural infiltration of stormwater. Student groups create personal rain gardens planted with native species that can be installed on the school campus, within the surrounding community, or at students' homes to provide a green infrastructure and low-impact development technology solution for areas with poor drainage that often flood during storm events.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Hot Cans and Cold Cans
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply the concepts of conduction, convection and radiation as they work in teams to solve two challenges. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately human body temperature, and the other problem is to cause an identical soda can of warm water to cool as much as possible during the same 30-minute time period. Students design their engineering solutions using only common everyday materials, and test their devices by recording the water temperatures in their two soda cans every five minutes.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Household Energy Audit
Read the Fine Print
Educational Use
Rating
0.0 stars

Students review the electrical appliances used at home and estimate the energy used for each. The results can help to show the energy hogs that could benefit from conservation or improved efficiency.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Household Energy Conservation and Efficiency
Read the Fine Print
Educational Use
Rating
0.0 stars

Students complete three different activities to evaluate the energy consumption in a household and explore potential ways to reduce that consumption. The focus is on conservation and energy efficient electrical devices and appliances. The lesson reinforces the relationship between power and energy and associated measurements and calculations required to evaluate energy consumption. The lesson provides the students with more concrete information for completing their culminating unit assignment.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
How Full Is Full?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about porosity and permeability and relate these concepts to groundwater flow. They use simple materials to conduct a porosity experiment and use the data to understand how environmental engineers decide on the placement and treatment of a drinking water well.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
How Much Water Do You Use?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students keep track of their own water usage for one week, gaining an understanding of how much water is used for various everyday activities. They relate their own water usages to the average residents of imaginary Thirsty County, and calculate the necessary water capacity of a dam that would provide residential water to the community.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Denise W. Carlson
Kristin Field
Megan Podlogar
Sara Born
Tom Rutkowski
Date Added:
09/18/2014
Human Power
Read the Fine Print
Educational Use
Rating
0.0 stars

Students do work by lifting a known mass over a period of time. The mass and measured distance and time is used to calculate force, work, energy and power in metric units. The students' power is then compared to horse power and the power required to light 60-watt light bulbs.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
I Don't Believe My Eyes!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students develop their understanding of the effects of invisible air pollutants with a rubber band air test, a bean plant experiment and by exploring engineering roles related to air pollution. In an associated literacy activity, students develop visual literacy and write photograph captions. They learn how images are manipulated for a powerful effect and how a photograph can make the invisible (such as pollutants) visible. Note: You may want to set up the activities for Air Pollution unit, Lessons 2 and 3, simultaneously as they require extended data collection time and can share collection sites.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
An Inflated Impression of Mars
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use scaling from real-world data to obtain an idea of the immense size of Mars in relation to the Earth and the Moon, as well as the distances between them. Students calculate dimensions of the scaled versions of the planets, and then use balloons to represent their relative sizes and locations.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014