Updating search results...

Search Resources

865 Results

View
Selected filters:
  • Life Science
Color Variation over Time in Rock Pocket Mouse Populations
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity provides an introduction to natural selection and the role of genetic variation by asking students to analyze illustrations of rock pocket mouse populations (dark/light fur) on different color substrates in the Sonoran Desert (light/dark) over time. Based on this evidence, and what they learn about variation and natural selection in the accompanying short film, students use this evidence to explain the change in the rock pocket mouse populations on the lava flow (dark substrate) over time. This is one of several classroom activities, focusing on related topics and varying in complexity, built around the short film. This ten minute film shows adaptive changes in rock pocket mouse populations, demonstrating the process of natural selection and can be accessed at http://www.hhmi.org/biointeractive/making-fittest-natural-selection-and-adaptation. The film is also available as an interactive video with embedded questions, which test students’ understanding as they watch the film.

Subject:
Genetics
Life Science
Material Type:
Lesson Plan
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Author:
Mary Colvard
Date Added:
07/07/2021
Common Core Curriculum: Kindergarten ELA: Listening and Learning Strand
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of the Listening and Learning Strand is for students to acquire language competence through listening, specifically building a rich vocabulary, and broad knowledge in history and science by being exposed to carefully selected, sequenced, and coherent read_alouds. The 9 units (or domains) provide lessons (including images and texts), as well as instructional objectives, core vocabulary, and assessment materials. The domain topics include: Nursery Rhymes and Fables; Five Senses; Stories; Plants; Farms; Kings and Queens; Seasons and Weather; Colonial Towns; and Taking Care of the Earth.

**NOTE: The New York State Education Department shut down the EngageNY website in 2022. In order to maintain educators' access, nearly all resources have been uploaded to archive.org and the resource links above have been updated to reflect their new locations.**

Subject:
Arts and Humanities
Ecology
English Language Arts
Language, Grammar and Vocabulary
Life Science
Literature
Material Type:
Diagram/Illustration
Reading
Teaching/Learning Strategy
Unit of Study
Provider:
New York State Education Department
Provider Set:
EngageNY
Date Added:
07/07/2021
Compare Human-Made Objects with Natural Objects
Read the Fine Print
Educational Use
Rating
0.0 stars

In small groups, students experiment and observe the similarities and differences between human-made objects and objects from nature. They compare the function and structure of hollow bones with drinking straws, bird beaks, tool pliers, bat wings and airplane wings. Observations are recorded in a compare & contrast chart, and then shared in a classroom discussion, along with follow up assessment activities such as journal writing and Venn diagrams.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Computational Biology: Genomes, Networks, Evolution, Fall 2015
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Manolis Kellis
Date Added:
01/01/2015
Computational Functional Genomics, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Study and discussion of computational approaches and algorithms for contemporary problems in functional genomics. Topics include DNA chip design, experimental data normalization, expression data representation standards, proteomics, gene clustering, self-organizing maps, Boolean networks, statistical graph models, Bayesian network models, continuous dynamic models, statistical metrics for model validation, model elaboration, experiment planning, and the computational complexity of functional genomics problems.

Subject:
Applied Science
Biology
Computer Science
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Gifford, David
Jaakkola, Tommi Sakari
Date Added:
01/01/2005
Computation for Biological Engineers, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the analytical, graphical, and numerical methods supporting the analysis and design of integrated biological systems. Topics include modularity and abstraction in biological systems, mathematical encoding of detailed physical problems, numerical methods for solving the dynamics of continuous and discrete chemical systems, statistics and probability in dynamic systems, applied local and global optimization, simple feedback and control analysis, statistics and probability in pattern recognition.

Subject:
Genetics
Life Science
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Alm, Eric
Date Added:
01/01/2006
Computer Simulation of the Sonoran Desert Community
Read the Fine Print
Educational Use
Rating
0.0 stars

The computer program's simulation of a Sonoran desert community should ultimately strengthen the student's comprehension of what is required for a natural ecosystem to sustain itself (remain in balance). This computer simulation program has great flexibility. It allows the student to manipulate the population numbers of five Sonoran Desert species. A species natural history attachment provides vital information for the students to familiarize themselves with each species' behaviors, its niche and food resource needs. The program includes two producers, the Saguaro cactus and the Ironwood Tree. It also includes 3 consumers, but their interactions both toward the producers and each other differ. The community's ability to remain in balance and sustain all five species so that none die out rests on the student's assessment skills enabling him to correctly identify these dependencies. The student learns by trial and error as he continues to fine tune the ecosystem that he maintains stewardship of.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Wendy J. Holmgren
Date Added:
09/18/2014
Concept-Centered Teaching, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Used for students receiving Advanced Placement credit and transfer credit. Program of study or research to be arranged with a Department faculty member. Written report required. Permission of Department required.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kosinski-Collins, Melissa
Date Added:
01/01/2006
Concepts of Biology
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

Concepts of Biology is designed for the introductory biology course for nonmajors taught at most two- and four-year colleges. The scope, sequence, and level of the program are designed to match typical course syllabi in the market. Concepts of Biology includes interesting applications, features a rich art program, and conveys the major themes of biology.

Subject:
Biology
Life Science
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
James Wise
Rebecca Roush
Samantha Fowler
Date Added:
01/30/2013
Connecticut Model Science for Grade 0 Kindergarten
Read the Fine Print
Educational Use
Rating
0.0 stars

CSDE Model Curricula Quick Start GuideEquitable and Inclusive Curriculum  The CSDE believes in providing a set of conditions where learners are repositioned at the center of curricula planning and design. Curricula, from a culturally responsive perspective, require intentional planning for diversity, equity, and inclusion in the development of units and implementation of lessons. It is critical to develop a learning environment that is relevant to and reflective of students’ social, cultural, and linguistic experiences to effectively connect their culturally and community-based knowledge to the class. Begin by connecting what is known about students’ cognitive and interdisciplinary diversity to the learning of the unit. Opposed to starting instructional planning with gaps in students’ knowledge, plan from an asset-based perspective by starting from students’ strengths. In doing so, curricula’s implementation will be grounded in instruction that engages, motivates, and supports the intellectual capacity of all students.Course Description: Three-Dimensional Learning shifts the focus of the science classroom to environments where students use disciplinary core ideas, crosscutting concepts with scientific practices to explore, examine, and explain how and why phenomena occur and to design solutions to problems. Three-dimensional learning helps students build their research, communication, and analytical thinking skills.More informational regarding Three-Dimensional learning can be accessed at the following address:What exactly IS three-dimensional learning? | Teaching ChannelEach year, students in Connecticut should be able to demonstrate greater capacity for connecting knowledge across, and between, the physical sciences, life sciences, earth and space sciences, and engineering design. The kindergarten year is unique as it is the formal beginning of NGSS learning pedagogy. However, CSDE has aligned our Pre-K learning standards to follow similar hands-on, student-centered methodology when developing Pre-K units of study. Therefore, students will begin to form deeper connections between concepts previously learned in Pre-K, such as collecting evidence and drawing conclusions, understanding relationships between objects, and critical thinking that leads to designing effective solutions for problems. Upon completion of Grade K, students should have a deeper understanding of: A review of what happens to objects as they are pulled or pushed.A basic understanding of what plants and animals need to survive.Explain how the weather today different than it was yesterday.Aligned Core Resources: Core resources is a local control decision.  Ensuring alignment of resources to the standards is critical for success. Alignment of all content materials across the grades and vertically in the grade band must be communicated to all staff. Additional Course Information:  NGSS has unique features. To better understand the make-up of NGSS visit the following website for a more detailed break-down of the CT Science standards from which this curriculum was based.  Nextgenscience  Assessment Information: There are many ways to assess student learning. Besides annual statewide summative testing, the Connecticut State Department of Education has developed NGSS Interim Assessment blocks specific to the grade 3 – 5 grade band. These can be accessed through the CSDE Website in the Performance Office tab. Many websites also offer assessment materials aligned to the NGSS, specifically through the NSTA, and Defined Learning.   ELA/Math Transferable Skills Addressed in the Course:  The following Practices Venn Diagram illustrates the connections and commonalities in the major content areas. This diagram attempts to cluster practices and capacities that have similar tenets and/or significant overlaps in the student expectations. Likewise, we have placed practices and capacities within the disciplinary domains if there was not a significant overlap or relationship to another discipline. One could argue certain practices/capacities could be placed in other positions within the Venn diagram. These placements are not definitive and the intention of the standards documents may not have conceptualized the three disciplinary areas In this manner. ​

Subject:
Life Science
Physical Science
Space Science
Material Type:
Full Course
Provider:
CT State Department of Education
Provider Set:
CSDE - Public
Date Added:
11/08/2023
Connecticut Model Science for Grade 0 Kindergarten, Living Things
Read the Fine Print
Educational Use
Rating
0.0 stars

Unit Overview/Summary - FOCUS:  Summary The bundle organizes performance expectations around the relationship between the needs of different plants and animals and the places they live. Instruction developed from this bundle should always maintain the three-dimensional nature of the standards but recognize that instruction is not limited to the practices and concepts directly linked with any of the bundle performance expectations. Connections between unit Disciplinary Core Ideas (DCIs)  The concept that all animals need food and plants need water and light (LS1.C as in K-LS1-1) connects to the idea that living things need water, air, and resources from the land, and they live in places that have the things they need (ESS3.A as in K-ESS3-1). These ideas also connect to the concept that plants and animals (including humans) can change the environment to meet their needs (K-ESS2-2). The concept that humans use natural resources for everything they do (ESS3.A as in K-ESS3-1) connects to the idea that the things people do to live comfortably can affect the world around them, but they can make choices that reduce their impacts on the land, water, air, and other living things (ESS3.C as in K-ESS2-2 and K-ESS3-3) Weather—which is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time (ESS2.D as in K-ESS2-1) —connects to the idea that living things need water (ESS3.A as in K-ESS3-1) and the idea that plants need light (LS1.C as in K-LS1-1). Also, the concept of the needs of living things connects to weather through making observation to notice and describe patterns as: observations can be used to describe the patterns of what plants and animals need (K-LS1-1) and observations and measurements of weather conditions can be used to describe and record the weather and to notice patterns over time (ESS2.D as in K-ESS2-1). The concepts of weather and patterns of weather (ESS2.D as in K-ESS2-1) also connect to the idea that some kinds of severe weather are more likely than others in a given region (ESS3.B as in K-ESS3-2). The idea that a situation that people want to change or create can be approached as a problem to be solved through engineering (ETS1.A, K-2-ETS1-1) could connect to several concepts such as plants need water and light to live and grow (LS1.C as in K-LS1-1), humans use natural resources for everything they do (ESS3.A as in K-ESS3-1), or that people can make choices that reduce their impacts on the land, water, air, and other living things (ESS3.C as in K-ESS3-3). These connections could be made through tasks such as designing a solution to the problem of plants in a garden not getting enough water or sunlight or identifying ways to reduce their class’s impact on the local water system. Alternatively, students could be challenged with a different design task involving creating products out of natural resources that are abundant in their area. In both tasks, students need an opportunity to reflect on the situation to be changed and that it can be approached as a problem to be solved through engineering.Unit Science and Engineering Practices (SEPs)Instruction leading to this bundle of PEs will help students build toward proficiency in elements of the practices of asking questions and defining problems (K-ESS3-2 and K-2-ETS1-1); developing and using models (K-ESS3-1); analyzing and interpreting data (K-LS1-1 and K-ESS2-1); engaging in argument from evidence (K-ESS2-2); and obtaining, evaluating, and communicating Information (K-ESS3-2 and K-ESS3-3). Many other practice elements can be used in instruction. Unit Crosscutting Concepts (CCCs)Instruction leading to this bundle of PEs will help students build toward proficiency in elements of the concepts of Cause and Effect (K-ESS3-2 and K-ESS3-3); and Patterns (K-LS1-1 and K-ESS2-1); Systems and System Models (K-ESS2-2 and K-ESS3-1). Many other crosscutting concepts elements can be used in instruction. All instruction should be three-dimensional.

Subject:
Life Science
Physical Science
Space Science
Material Type:
Unit of Study
Provider:
CT State Department of Education
Provider Set:
CSDE - Public
Connecticut Model Science for Grade 0 Kindergarten, Living Things, Living Things
Read the Fine Print
Educational Use
Rating
0.0 stars

Unit Overview/Summary - FOCUS: SummaryThe bundle organizes performance expectations around the relationship between the needs of different plants and animals and the places they live. Instruction developed from this bundle should always maintain the three-dimensional nature of the standards but recognize that instruction is not limited to the practices and concepts directly linked with any of the bundle performance expectations.Connections between unit Disciplinary Core Ideas (DCIs)  The concept that all animals need food and plants need water and light (LS1.C as in K-LS1-1) connects to the idea that living things need water, air, and resources from the land, and they live in places that have the things they need (ESS3.A as in K-ESS3-1). These ideas also connect to the concept that plants and animals (including humans) can change the environment to meet their needs (K-ESS2-2). The concept that humans use natural resources for everything they do (ESS3.A as in K-ESS3-1) connects to the idea that the things people do to live comfortably can affect the world around them, but they can make choices that reduce their impacts on the land, water, air, and other living things (ESS3.C as in K-ESS2-2 and K-ESS3-3)Weather—which is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time (ESS2.D as in K-ESS2-1) —connects to the idea that living things need water (ESS3.A as in K-ESS3-1) and the idea that plants need light (LS1.C as in K-LS1-1). Also, the concept of the needs of living things connects to weather through making observation to notice and describe patterns as: observations can be used to describe the patterns of what plants and animals need (K-LS1-1) and observations and measurements of weather conditions can be used to describe and record the weather and to notice patterns over time (ESS2.D as in K-ESS2-1). The concepts of weather and patterns of weather (ESS2.D as in K-ESS2-1) also connect to the idea that some kinds of severe weather are more likely than others in a given region (ESS3.B as in K-ESS3-2).The idea that a situation that people want to change or create can be approached as a problem to be solved through engineering (ETS1.A, K-2-ETS1-1) could connect to several concepts such as plants need water and light to live and grow (LS1.C as in K-LS1-1), humans use natural resources for everything they do (ESS3.A as in K-ESS3-1), or that people can make choices that reduce their impacts on the land, water, air, and other living things (ESS3.C as in K-ESS3-3). These connections could be made through tasks such as designing a solution to the problem of plants in a garden not getting enough water or sunlight or identifying ways to reduce their class’s impact on the local water system. Alternatively, students could be challenged with a different design task involving creating products out of natural resources that are abundant in their area. In both tasks, students need an opportunity to reflect on the situation to be changed and that it can be approached as a problem to be solved through engineering.Unit Science and Engineering Practices (SEPs)Instruction leading to this bundle of PEs will help students build toward proficiency in elements of the practices of asking questions and defining problems (K-ESS3-2 and K-2-ETS1-1); developing and using models (K-ESS3-1); analyzing and interpreting data (K-LS1-1 and K-ESS2-1); engaging in argument from evidence (K-ESS2-2); and obtaining, evaluating, and communicating Information (K-ESS3-2 and K-ESS3-3). Many other practice elements can be used in instruction.Unit Crosscutting Concepts (CCCs)Instruction leading to this bundle of PEs will help students build toward proficiency in elements of the concepts of Cause and Effect (K-ESS3-2 and K-ESS3-3); and Patterns (K-LS1-1 and K-ESS2-1); Systems and System Models (K-ESS2-2 and K-ESS3-1). Many other crosscutting concepts elements can be used in instruction. All instruction should be three-dimensional.

Subject:
Life Science
Physical Science
Space Science
Material Type:
Activity/Lab
Lecture Notes
Author:
Connecticut Department of Education
Date Added:
11/08/2023
Connecticut Model Science for Grade 0 Kindergarten, Patterns and the Effects of Sunlight
Read the Fine Print
Educational Use
Rating
0.0 stars

Unit Overview/Summary - FOCUS:  Summary The unit organizes performance expectations around observations of patterns and effects of sunlight. Instruction developed from this unit should always maintain the three-dimensional nature of the standards but recognize that instruction is not limited to the practices and concepts directly linked with any of the bundle performance expectations. Connections between unit Disciplinary Core Ideas (DCIs)  Sunlight warms Earth’s surface. (PS3.B as in K-PS3-1 and K-PS3-2). This concept of sunlight warming Earth’s surface connects to the idea that weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time (ESS2.D as in K-ESS2-1). The concept that designs can be conveyed through sketches, drawings, or physical models (ETS1.B as in K-2-ETS1-2) could connect to multiple concepts such as sunlight warms Earth’s surface (PS3.B as in K-PS3-1 and K-PS3-2) and weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time (ESS2.D as in K-ESS2-1). These connections could be made through a task in which students must use a representation to convey their design of a structure that will provide a cool place for the students at their school to use when they are outside on a warm day. Students could also engage in a task in which they need to convey the design of an object that would protect them from any negative effects of wind and then reflect on the usefulness of conveying their ideas through representations. Unit Science and Engineering Practices (SEPs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the practices of developing and using models (K-2-ETS1-2), planning, and carrying out investigations (K-PS3-1), analyzing and interpreting data (K-ESS2-1) and constructing explanations and designing solutions (K-PS3- 2). Many other practice elements can be used in instruction. Unit Crosscutting Concepts (CCCs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the crosscutting concepts of Patterns (K-ESS2-1), Cause and Effect (K-PS3-1 and K-PS3-2), and Structure and Function (K-2-ETS1-2). Many other crosscutting concepts elements can be used in instruction. All instruction should be three-dimensional.

Subject:
Life Science
Physical Science
Space Science
Material Type:
Unit of Study
Provider:
CT State Department of Education
Provider Set:
CSDE - Public
Connecticut Model Science for Grade 0 Kindergarten, Patterns and the Effects of Sunlight, Patterns and the Effects of Sunlight
Read the Fine Print
Educational Use
Rating
0.0 stars

Unit Overview/Summary - FOCUS:  Summary The unit organizes performance expectations around observations of patterns and effects of sunlight. Instruction developed from this unit should always maintain the three-dimensional nature of the standards but recognize that instruction is not limited to the practices and concepts directly linked with any of the bundle performance expectations.Connections between unit Disciplinary Core Ideas (DCIs)  Sunlight warms Earth’s surface. (PS3.B as in K-PS3-1 and K-PS3-2). This concept of sunlight warming Earth’s surface connects to the idea that weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time (ESS2.D as in K-ESS2-1). The concept that designs can be conveyed through sketches, drawings, or physical models (ETS1.B as in K-2-ETS1-2) could connect to multiple concepts such as sunlight warms Earth’s surface (PS3.B as in K-PS3-1 and K-PS3-2) and weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time (ESS2.D as in K-ESS2-1).These connections could be made through a task in which students must use a representation to convey their design of a structure that will provide a cool place for the students at their school to use when they are outside on a warm day. Students could also engage in a task in which they need to convey the design of an object that would protect them from any negative effects of wind and then reflect on the usefulness of conveying their ideas through representations.Unit Science and Engineering Practices (SEPs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the practices of developing and using models (K-2-ETS1-2), planning, and carrying out investigations (K-PS3-1), analyzing and interpreting data (K-ESS2-1) and constructing explanations and designing solutions (K-PS3- 2). Many other practice elements can be used in instruction.Unit Crosscutting Concepts (CCCs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the crosscutting concepts of Patterns (K-ESS2-1), Cause and Effect (K-PS3-1 and K-PS3-2), and Structure and Function (K-2-ETS1-2). Many other crosscutting concepts elements can be used in instruction. All instruction should be three-dimensional.

Subject:
Life Science
Physical Science
Space Science
Material Type:
Unit of Study
Author:
Connecticut Department of Education
Date Added:
11/08/2023
Connecticut Model Science for Grade 0 Kindergarten, Pushes and Pulls
Read the Fine Print
Educational Use
Rating
0.0 stars

Unit Overview/Summary - FOCUS:  Summary The unit organizes performance expectations around the topic of pushes and pulls. Instruction developed from this bundle should always maintain the three-dimensional nature of the standards but recognize that instruction is not limited to the practices and concepts directly linked with any of the bundle performance expectations. Connections between unit Disciplinary Core Ideas (DCIs)  Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it (PS2.A as in K-PS2-1 and K-PS2-2). This concept of motion connects to the idea that a bigger push or pull makes things speed up or slow down more quickly (PS3.C as in K-PS2-1). The concept of pushing or pulling on an object (PS2.A as in K-PS2-1 and K-PS2-2) also connects to the idea that when objects touch, or collide, they push on one another and can change motion. (PS2.B as in K-PS2-1) The idea that a bigger push or pull makes things speed up or slow down more quickly (PS3.C as in K-PS2-1) connects to the concept that pushes and pulls can have different strengths and directions (PS2.A as in K-PS2-1 and K-PS2-2). The concept that people measure weather conditions to describe and record the weather and to notice patterns over time (ESS2.D as in K-ESS2-1) connects to the idea that it is useful to compare and test designs (ETS1.C as in K-2-ETS1-3) through data analysis. The ideas that a situation that people want to change or create can be approached as a problem to be solved through engineering (ETS1.A as in K-PS2-2) and that, because there is always more than one possible solution to a problem, it is useful to compare and test designs (ETS1.C as in K-2-ETS1-3) could connect to multiple physical science concepts in this bundle. For example, these concepts could connect to the idea that when objects touch or collide, they push on one another and can change motion (PS2.B as in K-PS2-1) through a task in which students are challenged to work in groups to change the direction or speed of a ball with another object and then test and compare each group’s solution. Alternatively, these engineering concepts could connect to the idea that a bigger push or pull makes things speed up or slow down more quickly (PS3.C as in K-PS2-1) through a different task in which students are asked to pull or push an object in a certain amount of time and then challenged to do it faster. Students could then compare their solutions and reflect on how their pull or push needed to change in order to move the object faster. Unit Science and Engineering Practices (SEPs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the practices of planning and carrying out investigations (KPS2-1); and analyzing and interpreting data (K-PS2-2, K-ESS2-1, and K-2-ETS1-3). Many other practice elements can be used in instruction. Unit Crosscutting Concepts (CCCs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the crosscutting concepts of Patterns (K-ESS2-1) and Cause and Effect (K-PS2-1 and K-PS2-2). Many other crosscutting concepts elements can be used in instruction.

Subject:
Life Science
Physical Science
Space Science
Material Type:
Unit of Study
Provider:
CT State Department of Education
Provider Set:
CSDE - Public
Connecticut Model Science for Grade 0 Kindergarten, Pushes and Pulls, Pushes and Pulls
Read the Fine Print
Educational Use
Rating
0.0 stars

Unit Overview/Summary - FOCUS:  Summary The unit organizes performance expectations around the topic of pushes and pulls. Instruction developed from this bundle should always maintain the three-dimensional nature of the standards but recognize that instruction is not limited to the practices and concepts directly linked with any of the bundle performance expectations.Connections between unit Disciplinary Core Ideas (DCIs)  Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it (PS2.A as in K-PS2-1 and K-PS2-2). This concept of motion connects to the idea that a bigger push or pull makes things speed up or slow down more quickly (PS3.C as in K-PS2-1).The concept of pushing or pulling on an object (PS2.A as in K-PS2-1 and K-PS2-2) also connects to the idea that when objects touch, or collide, they push on one another and can change motion. (PS2.B as in K-PS2-1)The idea that a bigger push or pull makes things speed up or slow down more quickly (PS3.C as in K-PS2-1) connects to the concept that pushes and pulls can have different strengths and directions (PS2.A as in K-PS2-1 and K-PS2-2).The concept that people measure weather conditions to describe and record the weather and to notice patterns over time (ESS2.D as in K-ESS2-1) connects to the idea that it is useful to compare and test designs (ETS1.C as in K-2-ETS1-3) through data analysis.The ideas that a situation that people want to change or create can be approached as a problem to be solved through engineering (ETS1.A as in K-PS2-2) and that, because there is always more than one possible solution to a problem, it is useful to compare and test designs (ETS1.C as in K-2-ETS1-3) could connect to multiple physical science concepts in this bundle. For example, these concepts could connect to the idea that when objects touch or collide, they push on one another and can change motion (PS2.B as in K-PS2-1) through a task in which students are challenged to work in groups to change the direction or speed of a ball with another object and then test and compare each group’s solution. Alternatively, these engineering concepts could connect to the idea that a bigger push or pull makes things speed up or slow down more quickly (PS3.C as in K-PS2-1) through a different task in which students are asked to pull or push an object in a certain amount of time and then challenged to do it faster. Students could then compare their solutions and reflect on how their pull or push needed to change in order to move the object faster.Unit Science and Engineering Practices (SEPs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the practices of planning and carrying out investigations (KPS2-1); and analyzing and interpreting data (K-PS2-2, K-ESS2-1, and K-2-ETS1-3). Many other practice elements can be used in instruction.Unit Crosscutting Concepts (CCCs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the crosscutting concepts of Patterns (K-ESS2-1) and Cause and Effect (K-PS2-1 and K-PS2-2). Many other crosscutting concepts elements can be used in instruction.

Subject:
Life Science
Physical Science
Space Science
Material Type:
Unit of Study
Author:
Connecticut Department of Education
Date Added:
11/08/2023
Connecticut Model Science for Grade 1
Read the Fine Print
Educational Use
Rating
0.0 stars

CSDE Model Curricula Quick Start GuideEquitable and Inclusive Curriculum  The CSDE believes in providing a set of conditions where learners are repositioned at the center of curricula planning and design. Curricula, from a culturally responsive perspective, require intentional planning for diversity, equity, and inclusion in the development of units and implementation of lessons. It is critical to develop a learning environment that is relevant to and reflective of students’ social, cultural, and linguistic experiences to effectively connect their culturally and community-based knowledge to the class. Begin by connecting what is known about students’ cognitive and interdisciplinary diversity to the learning of the unit. Opposed to starting instructional planning with gaps in students’ knowledge, plan from an asset-based perspective by starting from students’ strengths. In doing so, curricula’s implementation will be grounded in instruction that engages, motivates, and supports the intellectual capacity of all students.Course Description: Three-Dimensional Learning shifts the focus of the science classroom to environments where students use disciplinary core ideas, crosscutting concepts with scientific practices to explore, examine, and explain how and why phenomena occur and to design solutions to problems. Three-dimensional learning helps students build their research, communication, and analytical thinking skills.More informational regarding Three-Dimensional learning can be accessed at the following address:What exactly IS three-dimensional learning? | Teaching ChannelEach year, students in Connecticut should be able to demonstrate greater capacity for connecting knowledge across, and between, the physical sciences, life sciences, earth and space sciences, and engineering design. During Grade 1, students will begin to form deeper connections between concepts previously learned in grades PK-K, such as collecting evidence and drawing conclusions, understanding relationships between objects, and critical thinking that leads to designing effective solutions for problems. Upon completion of Grade 1, students should have a deeper understanding of: A review of how parents and their children are similar or different.A basic understanding of what are the objects in the sky and how do they seem to move.How plants and animals meet their needs to survive.What happens when things vibrate.Aligned Core Resources: Core resources is a local control decision.  Ensuring alignment of resources to the standards is critical for success. Alignment of all content materials across the grades and vertically in the grade band must be communicated to all staff. Additional Course Information:  NGSS has unique features. To better understand the make-up of NGSS visit the following website for a more detailed break-down of the CT Science standards from which this curriculum was based.  Nextgenscience  Assessment Information: There are many ways to assess student learning. Besides annual statewide summative testing, the Connecticut State Department of Education has developed NGSS Interim Assessment blocks specific to the grade 3 – 5 grade band. These can be accessed through the CSDE Website in the Performance Office tab. Many websites also offer assessment materials aligned to the NGSS, specifically through the NSTA, and Defined Learning.   ELA/Math Transferable Skills Addressed in the Course:  The following Practices Venn Diagram illustrates the connections and commonalities in the major content areas. This diagram attempts to cluster practices and capacities that have similar tenets and/or significant overlaps in the student expectations. Likewise, we have placed practices and capacities within the disciplinary domains if there was not a significant overlap or relationship to another discipline. One could argue certain practices/capacities could be placed in other positions within the Venn diagram. These placements are not definitive and the intention of the standards documents may not have conceptualized the three disciplinary areas In this manner. ​

Subject:
Life Science
Physical Science
Space Science
Material Type:
Full Course
Provider:
CT State Department of Education
Provider Set:
CSDE - Public
Date Added:
11/09/2023
Connecticut Model Science for Grade 1, Light and Solar Patterns
Read the Fine Print
Educational Use
Rating
0.0 stars

Unit Overview/Summary - FOCUS:  Summary The unit organizes performance expectations around the theme of seeing objects. Instruction developed from this bundle should always maintain the three-dimensional nature of the standards but recognize that instruction is not limited to the practices and concepts directly linked with any of the unit performance expectations. Connections between unit Disciplinary Core Ideas (DCIs)  The concept that seasonal patterns of sunrise and sunset can be observed, described, and predicted (ESS1.B as in 1-ESS1-2) connects to the idea that objects can be seen if they give off their own light or if there is light to illuminate them (PS4.B as in 1-PS4-2). This idea in turn connects to the idea that some materials allow light to pass through them, others allow only some light through, and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach (PS4.B as in 1-PS4-3). Unit Science and Engineering Practices (SEPs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the practices of planning and carrying out investigations (1- ESS1-2 and 1-PS4-3) and constructing explanations and designing solutions (1-PS4-2). Many other practice elements can be used in instruction. Unit Crosscutting Concepts (CCCs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the crosscutting concepts of Patterns (1-ESS1-2) and Cause and Effect (1-PS4-2 and 1-PS4-3). Many other crosscutting concepts elements can be used in instruction. All instruction should be three-dimensional

Subject:
Life Science
Physical Science
Space Science
Material Type:
Unit of Study
Provider:
CT State Department of Education
Provider Set:
CSDE - Public
Connecticut Model Science for Grade 1, Light and Solar Patterns, Light and Solar Patterns
Read the Fine Print
Educational Use
Rating
0.0 stars

Unit Overview/Summary - FOCUS: SummaryThe unit organizes performance expectations around the theme of seeing objects. Instruction developed from this bundle should always maintain the three-dimensional nature of the standards but recognize that instruction is not limited to the practices and concepts directly linked with any of the unit performance expectations.Connections between unit Disciplinary Core Ideas (DCIs)  The concept that seasonal patterns of sunrise and sunset can be observed, described, and predicted (ESS1.B as in 1-ESS1-2) connects to the idea that objects can be seen if they give off their own light or if there is light to illuminate them (PS4.B as in 1-PS4-2). This idea in turn connects to the idea that some materials allow light to pass through them, others allow only some light through, and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach (PS4.B as in 1-PS4-3).Unit Science and Engineering Practices (SEPs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the practices of planning and carrying out investigations (1- ESS1-2 and 1-PS4-3) and constructing explanations and designing solutions (1-PS4-2). Many other practice elements can be used in instruction.Unit Crosscutting Concepts (CCCs)Instruction leading to this unit of PEs will help students build toward proficiency in elements of the crosscutting concepts of Patterns (1-ESS1-2) and Cause and Effect (1-PS4-2 and 1-PS4-3). Many other crosscutting concepts elements can be used in instruction. All instruction should be three-dimensional

Subject:
Life Science
Physical Science
Space Science
Material Type:
Unit of Study
Author:
Connecticut Department of Education
Date Added:
11/09/2023
Connecticut Model Science for Grade 1, Observing Objects with Sight and Hearing
Read the Fine Print
Educational Use
Rating
0.0 stars

Unit Overview/Summary - FOCUS:  Summary The unit organizes performance expectations with a focus on the theme of observing objects with sight and hearing. Instruction developed from this unit should always maintain the three-dimensional nature of the standards but recognize that instruction is not limited to the practices and concepts directly linked with any of the unit performance expectations. Connections between bundle DCIs The idea that seasonal patterns of sunrise and sunset can be observed, described, and predicted (ESS1.B as in 1-ESS1-2) connects to the concept that the patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted (ESS1.A as in 1-ESS1-1). These ideas also connect to the concept that objects can be seen if light is available to illuminate them or if they give off their own light (1-PS4-2). The concept of how objects can be seen can also connect to the idea that people also use a variety of devices to communicate (send and receive information) over long distances (PS4.C as in 1-PS4-4). Ideas about communication devices also connect to the concept that sound can make matter vibrate, and vibrating matter can make sound (PS4.A as in 1-PS4-1). The engineering design idea that a situation that people want to change or create can be approached as a problem to be solved through engineering (ETS1.A as in K-2-ETS1-1) could be applied to different science concepts, such as to the concept that sound can make matter vibrate, and vibrating matter can make sound (PS4.A as in 1-PS4-1), and to the concept that people also use a variety of devices to communicate (send and receive information) over long distances (PS4.C as in 1-PS4-4). Connections can be made through engineering tasks such as a task in which students identify devices they, or their families, may use that have been created to solve the problem of communicating over long distances, through a task in which students are challenged to create an instrument that uses vibrations to make sound, or through a task in which students try to make something move with vibrations created by sound. Additionally, students could connect these science concepts to the idea that because there is always more than one possible solution to a problem, it is useful to compare and test designs (ETS1.C as in K-2-ETS1- 3). For example, students could test the instruments they created, or they can compare different devices for how well the device allows people to communicate over long distances. Unit Science and Engineering Practices Instruction leading to this unit of PEs will help students build toward proficiency in elements of the practices of asking questions and defining problems (K-2- ETS1-1), planning and carrying out investigations (1-PS4-1 and 1-ESS1-2), analyzing and interpreting data (1-ESS1-1), and constructing explanations and designing solutions (1-PS4-2 and 1-PS4-4). Many other practice elements can be used in instruction. Unit Crosscutting Concepts Instruction leading to this unit of PEs will help students build toward proficiency in elements of the crosscutting concepts of Patterns (1-ESS1-1 and 1-ESS1-2) and Cause and Effect (1-PS4-1 and 1-PS4-2). Many other crosscutting concepts elements can be used in instruction. All instruction should be three-dimensional.

Subject:
Life Science
Physical Science
Space Science
Material Type:
Unit of Study
Provider:
CT State Department of Education
Provider Set:
CSDE - Public