Updating search results...

Search Resources

10000 Results

View
Selected filters:
Elasticity & Young's Modulus for Tissue Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

As part of the engineering design process to create testable model heart valves, students learn about the forces at play in the human body to open and close aortic valves. They learn about blood flow forces, elasticity, stress, strain, valve structure and tissue properties, and Young's modulus, including laminar and oscillatory flow, stress vs. strain relationship and how to calculate Young's modulus. They complete some practice problems that use the equations learned in the lesson mathematical functions that relate to the functioning of the human heart. With this understanding, students are ready for the associated activity, during which they research and test materials and incorporate the most suitable to design, build and test their own prototype model heart valves.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Election Poll, Variation 1
Unrestricted Use
CC BY
Rating
0.0 stars

This task introduces the fundamental statistical ideas of using data summaries (statistics) from random samples to draw inferences (reasoned conclusions) about population characteristics (parameters). In the task built around an election poll scenario, the population is the entire seventh grade class, the unknown characteristic (parameter) of interest is the proportion of the class members voting for a specific candidate, and the sample summary (statistic) is the observed proportion of voters favoring the candidate in a random sample of class members.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Election Poll, Variation 2
Unrestricted Use
CC BY
Rating
0.0 stars

This task introduces the fundamental statistical ideas of using data summaries (statistics) from random samples to draw inferences (reasoned conclusions) about population characteristics (parameters). In the task built around an election poll scenario, the population is the entire seventh grade class, the unknown characteristic (parameter) of interest is the proportion of the class members voting for a specific candidate, and the sample summary (statistic) is the observed proportion of voters favoring the candidate in a random sample of class members.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Election Poll, Variation 3
Unrestricted Use
CC BY
Rating
0.0 stars

This task introduces the fundamental statistical ideas of using data summaries (statistics) from random samples to draw inferences (reasoned conclusions) about population characteristics (parameters). In the task built around an election poll scenario, the population is the entire seventh grade class, the unknown characteristic (parameter) of interest is the proportion of the class members voting for a specific candidate, and the sample summary (statistic) is the observed proportion of voters favoring the candidate in a random sample of class members.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Electoral College
Unrestricted Use
CC BY
Rating
0.0 stars

n addition to providing a task that relates to other disciplines (history, civics, current events, etc.), this task is intended to demonstrate that a graph can summarize a distribution as well as provide useful information about specific observations.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/20/2013
Electric Cars: Business
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electric cars are more than a novel means of mobility. They have been recognized as an essential building block of the energy transition. Fulfilling their promise will imply a significant change in the technical, digital and social dimensions of transport and energy infrastructure. If you want to explore the business opportunities this new market offers, then this is the course for you!

This course explains how electric mobility can work for various businesses, including fleet managers, automobile manufacturers and charging infrastructure providers. The experts of TU Delft, together with other knowledge institutes and companies in the Netherlands, will provide insights into and examples of how innovations have disrupted conventional businesses and created new businesses altogether. This will be explained through various concepts and models, including total cost of ownership models, lean mass production, value chain thinking and business integration.

After completing this course, you will be able to create e-mobility business models and develop a new strategy for your company which includes transition to or incorporation of e-mobility.

The course includes video lectures, presentations and exercises, which are all illustrated with real-world case studies from projects that were implemented in the Netherlands.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Ir. F. Rieck
ir. A.E. Hoekstra
ir. R. Steinmetz
ir. R. Wolbertus
prof.dr. G.P. van Wee
Date Added:
07/14/2021
Electric Cars: Introduction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electric vehicles are the future of transportation. Electric mobility has become an essential part of the energy transition, and will imply significant changes for vehicle manufacturers, governments, companies and individuals.

If you are interested in learning about the electric vehicle technology and how it can work for your business or create societal impact, then this is the course for you.

The experts of TU Delft, together with other knowledge institutes and companies in the Netherlands, will prepare you for upcoming developments amid the transition to electric vehicles.

You’ll explore the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure; profitable business models for electric mobility; and effective policies for governmental bodies, which will accelerate the uptake of electric mobility.

The course includes video lectures, presentations and exercises, which are all reinforced with real-world case studies from projects that were implemented in the Netherlands.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Ir. F. Rieck
dr. Pavol Bauer
prof.dr.ir. Margot Weijnen
Date Added:
07/14/2021
Electric Cars: Policy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electric cars are more than a novel means of mobility. They have been recognized as an essential building block of the energy transition. Fulfilling their promise will imply a significant change in the technical, digital and social dimensions of transport and energy infrastructure. As the massive adoption of electric mobility will deeply change our society and our individual routines, government intervention is called for. If you are interested in learning about the roles of government in shaping the transition towards electric mobility and renewable energy systems, then this is the course for you.

In this course, you will explore the promise of electric mobility from different public policy perspectives and different levels of government, and learn how they interact. After completing this course, you will be able to assess a policy plan to support the introduction of electric cars and make a motivated choice between alternative policy instruments. In the final week, the course will be concluded by connecting the different track perspectives.

The course includes video lectures, presentations and exercises, which are all illustrated with real-world case studies from projects that were implemented in the Netherlands.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
prof.dr.ir. Margot Weijnen
prof.dr.ir. Z. Lukszo
Date Added:
07/14/2021
Electric Cars: Technology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electric cars are more than a novel means of mobility. They have been recognized as an essential building block of the energy transition. Fulfilling their promise will imply a significant change in the technical, digital and social dimensions of transport and energy infrastructure. If you are interested in learning about the state-of-the-art technology behind electric cars, then this is the course for you!

This course focuses on the technology behind electric cars. You will explore the working principle of electric vehicles, delve into the key roles played by motors and power electronics, learn about battery technology, EV charging, smart charging and about future trends in the development of electric cars.

The course includes video lectures, presentations and exercises, which are all illustrated with real-world case studies from projects that were implemented in the Netherlands.

This course was co-developed by Dutch Innovation Centre for Electric Road Transport (Dutch-INCERT) and TU Delft and is taught by experts from both the industry and academia, who share their knowledge and insights.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
dr. Pavol Bauer
ir. A.E. Hoekstra
ir. G.R. Chandra Mouli
prof.dr.ir. M. Wagemaker
Date Added:
07/14/2021
Electric Field Hockey
Unrestricted Use
CC BY
Rating
0.0 stars

Play hockey with electric charges. Place charges on the ice, then hit start to try to get the puck in the goal. View the electric field. Trace the puck's motion. Make the game harder by placing walls in front of the goal. This is a clone of the popular simulation of the same name marketed by Physics Academic Software and written by Prof. Ruth Chabay of the Dept of Physics at North Carolina State University.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Danielle Harlow
Michael Dubson
Sam Reid
Wendy Adams
Date Added:
10/31/2006
Electric Field Hockey (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Play hockey with electric charges. Place charges on the ice, then hit start to try to get the puck in the goal. View the electric field. Trace the puck's motion. Make the game harder by placing walls in front of the goal. This is a clone of the popular simulation of the same name marketed by Physics Academic Software and written by Prof. Ruth Chabay of the Dept of Physics at North Carolina State University.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Danielle Harlow
Michael Dubson
Sam Reid
Wendy Adams
Date Added:
07/02/2008
Electric Field of Dreams
Unrestricted Use
CC BY
Rating
0.0 stars

Play ball! Add charges to the Field of Dreams and see how they react to the electric field. Turn on a background electric field and adjust the direction and magnitude. (Kevin Costner not included).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Sam Reid
Date Added:
11/16/2007
Electric Machines, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Treatment of electromechanical transducers, rotating and linear electric machines. Lumped-parameter electromechanics of interaction. Development of device characteristics: energy conversion density, efficiency; and of system interaction characteristics: regulation, stability, controllability, and response. Use of electric machines in drive systems. Problems taken from current research. This course explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing electromechanical design of the major classes of rotating and linear electric machines and have an understanding of the principles of the energy conversion parts of Mechatronics. In addition to design, students learn how to estimate the dynamic parameters of electric machines and understand what the implications of those parameters are on the performance of systems incorporating those machines.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
James Kirtley
Date Added:
01/01/2013
Electrical Engineering and Computer Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This site, created by the Massachusetts Institute of Technology, introduces the electrical engineering and computer science department. Graduates of MIT's electrical engineering and computer science department work in diverse industries and conduct research in a broad range of areas. The site features lecture notes, assignments, solutions, online textbooks, projects, examples and exams.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/18/2011
Electrical, Optical, and Magnetic Properties of Materials, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class discusses the origin of electrical, magnetic and optical properties of materials, with a focus on the acquisition of quantum mechanical tools. It begins with an analysis of the properties of materials, presentation of the postulates of quantum mechanics, and close examination of the hydrogen atom, simple molecules and bonds, and the behavior of electrons in solids and energy bands. Introducing the variation principle as a method for the calculation of wavefunctions, the course continues with investigation of how and why materials respond to different electrical, magnetic and electromagnetic fields and probes and study of the conductivity, dielectric function, and magnetic permeability in metals, semiconductors, and insulators. A survey of common devices such as transistors, magnetic storage media, optical fibers concludes the semester. Note: The Magnetics unit was taught by co-instructor David Paul; that material is not available at this time.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Marzari, Nicola
Paul, David
Date Added:
01/01/2007
Electrical Power Drives
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

After this course the student can:
Understand mechanical system requirements for Electric Drive
Understand and apply passive network elements (R, L, C), laws of Kirchhof, Lorentz, Faraday
Understand and apply: phasors for simple R,L,C circuits
Understand and apply real and reactive power, rms, active and reactive current, cos phi
Describe direct current (DC), (single phase) alternating current (AC) and (three phase) alternating current systems, star-delta connection
Understand the principle of switch mode power electronic converters, pole as a two quadrant and four quadrant converter
Understand principles of magnetic circuits, inductances and transformers

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Assessment
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr.ir. P. Bauer
Date Added:
02/03/2016
Electrical machines and drives
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course gives an overview of different types of electrical machines and drives. Different types of mechanica loads are discussed. Maxwell's equations are applied to magnetic circuits including permanent magnets. DC machines, induction machines, synchronous machines, switched reluctance machines, brushless DC machines and single-phase machines are discussed with the power electronic converters used to drive them.Study Goals After following this course the students should have an overview over the different types of electrical machines and the way they are used in drive systems and they should be able to derive equations describing the steady-state performance of these machines

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
H. Polinder
Date Added:
02/08/2016
The Electric and Magnetic Personalities of Mr. Maxwell
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are briefly introduced to Maxwell's equations and their significance to phenomena associated with electricity and magnetism. Basic concepts such as current, electricity and field lines are covered and reinforced. Through multiple topics and activities, students see how electricity and magnetism are interrelated.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Teresa Ellis
Date Added:
09/18/2014
Electricity and Gas: Market Design and Policy Issues
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

European gas and electricity markets have largely been liberalized. Due to the specific physical characteristics and public interest aspects of electricity and gas, and to the fact that the networks continue to be natural monopolies, these markets require careful design. In this class, it is analyzed what the market design variables are and how the ongoing process of market design depends on policy goals, starting conditions and physical, technical and institutional constraints. In addition, a number of current policy issues will be discussed, such as security of supply, the CO2 emissions market, the integration of European energy markets and privatization. Participation in a simulation game, in which long-term market dynamics are simulated, is mandatory.

Subject:
Economics
Social Science
Material Type:
Lecture
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. L.J. de Vries
Date Added:
02/12/2016
Electricity and Magnetic Fields
Read the Fine Print
Educational Use
Rating
0.0 stars

The grand challenge for this legacy cycle unit is for students to design a way to help a recycler separate aluminum from steel scrap metal. In previous lessons, they have looked at how magnetism might be utilized. In this lesson, students think about how they might use magnets and how they might confront the problem of turning the magnetic field off. Through the accompanying activity students explore the nature of an electrically induced magnetic field and its applicability to the needed magnet.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014