Updating search results...

Search Resources

1074 Results

View
Selected filters:
  • Lesson Plan
Electromagnetic Radiation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a hypothetical scenario that delivers the unit's Grand Challenge Question: To apply an understanding of nanoparticles to treat, detect and protect against skin cancer. Towards finding a solution, they begin the research phase by investigating the first research question: What is electromagnetic energy? Students learn about the electromagnetic spectrum, ultraviolet radiation (including UVA, UVB and UVC rays), photon energy, the relationship between wave frequency and energy (c = λν), as well as about the Earth's ozone-layer protection and that nanoparticles are being used for medical applications. The lecture material also includes information on photo energy and the dual particle/wave model of light. Students complete a problem set to calculate frequency and energy.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Electromagnets
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, the students will complete the grand challenge and design an electromagnet to separate steel from aluminum for the recycler. In order to do this, students compare the induced magnetic field of an electric current with the magnetic field of a permanent magnet and must make the former look like the latter. They discover that looping the current produces the desired effect and find ways to further strengthen the magnetic field.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Electrons on the Move
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about current electricity and necessary conditions for the existence of an electric current. Students construct a simple electric circuit and a galvanic cell to help them understand voltage, current and resistance.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
09/18/2014
The Emancipation Proclamation: Freedom's First Steps
Unrestricted Use
CC BY
Rating
0.0 stars

Why was the Emancipation Proclamation important? While the Civil War began as a war to restore the Union, not to end slavery, by 1862 President Abraham Lincoln came to believe that he could save the Union only by broadening the goals of the war. Students can explore the obstacles and alternatives America faced in making the journey toward "a more perfect Union."

Subject:
History
Material Type:
Lesson Plan
Provider:
National Endowment for the Humanities
Provider Set:
EDSITEment!
Date Added:
07/07/2021
Emily Dickinson and Poetic Imagination: "Leap, Plashless"
Unrestricted Use
CC BY
Rating
0.0 stars

Emily Dickinson's poetry often reveals a child-like fascination with the natural world. She writes perceptively of butterflies, birds, and bats and uses lucid metaphors to describe the sky and the sea.

Subject:
Arts and Humanities
Literature
Material Type:
Lesson Plan
Provider:
National Endowment for the Humanities
Provider Set:
EDSITEment!
Date Added:
07/07/2021
Empire and Identity in the American Colonies
Unrestricted Use
CC BY
Rating
0.0 stars

In this lesson students will examine the various visions of three active agents in the creation and management of Great Britain's empire in North America: British colonial leaders and administrators, North American British colonists, and Native Americans.

Subject:
History
Material Type:
Lesson Plan
Provider:
National Endowment for the Humanities
Provider Set:
EDSITEment!
Date Added:
07/07/2021
Energy Basics
Read the Fine Print
Educational Use
Rating
0.0 stars

Demos and activities in this lesson are intended to illustrate the basic concepts of energy science -- work, force, energy, power etc. and the relationships among them. The "lecture" portion of the lesson includes many demonstrations to keep students engaged, yet has high expectations for the students to perform energy related calculations and convert units as required. A homework assignment and quiz are used to reinforce and assess these basic engineering science concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Energy Conservation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the idea that energy use impacts the environment and our wallets. They discuss different types of renewable and nonrenewable energy sources, as well as the impacts of energy consumption. Through a series of activities, students understand how they use energy and how it is transformed from one type to another. They learn innovative ways engineers conserve energy and how energy can be conserved in their homes.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Energy Efficiency
Read the Fine Print
Educational Use
Rating
0.0 stars

This Lesson provides two different activities that require students to measure energy outputs and inputs to determine the efficiency of conversions and simple systems. One of the activities includes Lego motors and accomplishing work. The other investigates energy for heating water. They learn about by products of energy conversions and how to improve upon efficiency. The teacher can choose to use either of these or both of these. The calculations in the water heating experiment are more complicated than in the Lego motor activity. Thus, the heating activity is suitable for older students, only the Lego motor activity suitable for younger students.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Nate Barlow
Susan Powers
Date Added:
09/18/2014
Energy Forms, States and Conversions
Read the Fine Print
Educational Use
Rating
0.0 stars

The students participate in many demonstrations during the first day of this lesson to learn basic concepts related to the forms and states of energy. This knowledge is then applied the second day as they assess various everyday objects to determine what forms of energy are transformed to accomplish the object's intended task. The students use block diagrams to illustrate the form and state of energy flowing into and out of the process.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
The Energy Problem
Read the Fine Print
Educational Use
Rating
0.0 stars

This six-day lesson provides students with an introduction to the importance of energy in their lives and the need to consider how and why we consume the energy we do. The lesson includes activities to engage students in general energy issues, including playing an award-winning Energy Choices board game, and an optional graphing activity that provides experience with MS Excel graphing and perspectives on how we use energy and how much energy we use.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
Date Added:
09/18/2014
Energy Resources and Systems
Read the Fine Print
Educational Use
Rating
0.0 stars

Several activities are included to teach and research the differences between renewable and non-renewable resources and various energy resources. The students work with a quantitative, but simple model of energy resources to show how rapidly a finite, non-renewable energy sources can be depleted, whereas renewable resources continue to be available. The students then complete a homework assignment or a longer, in-depth research project to learn about how various technologies that capture energy resources for human uses and their pros and cons. Fact sheets are included to help students get started on their investigation of their assigned energy source.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Energy Transfer in Musical Instruments
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers concepts of energy and energy transfer utilizing energy transfer in musical instruments as an example. More specifically, the lesson explains the two different ways in which energy can be transferred between a system and its environment. The law of conservation of energy will also be taught. Example systems will be presented to students (two cars on a track and a tennis ball falling to the ground) and students will be asked to make predictions and explain the energy transfer mechanisms. The engineering focus comes in clearly in the associated activity when students are asked to apply the fundamental concepts of the lesson to design a musical instrument. The systems analyzed in the lesson should help a great deal in terms of discussing how to apply conservation of energy and energy transfer to make things.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Adam Kempton
Date Added:
09/18/2014
The Energy of Light
Read the Fine Print
Educational Use
Rating
0.0 stars

In this introduction to light energy, students learn about reflection and refraction as they learn that light travels in wave form. Through hands-on activities, they see how prisms, magnifying glasses and polarized lenses work. They also gain an understanding of the colors of the rainbow as the visible spectrum, each color corresponding to a different wavelength.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Cooper
Mandek Richardson
Patricio Rocha
Tapas K. Das
Date Added:
09/18/2014
The Energy of Music
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to sound energy concepts and how engineers use sound energy. Through hands-on activities and demonstrations, students examine how we know sound exists by listening to and seeing sound waves. They learn to describe sound in terms of its pitch, volume and frequency. They explore how sound waves move through liquids, solids and gases. They also identify the different pitches and frequencies, and create high- and low-pitch sound waves.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Engineer a Sneaker
Read the Fine Print
Educational Use
Rating
0.0 stars

The goal is for students to understand the basics of engineering that go into the design of a sneaker. The bottom or sole of a sneaker provides support, cushioning, and traction. In addition the sole is flexible and can have some fashion based functions such as cool colors and added height. The sneaker is a well-engineered product, utilizing a variety of materials to create a highly functional, useful shoe. This unit focuses on having the students select specific design requirements, such as good traction or lots of cushioning, and then select from a variety of materials to build a model shoe with the same design criteria.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/26/2008
Engineering Bones
Read the Fine Print
Educational Use
Rating
0.0 stars

Students extend their knowledge of the skeletal system to biomedical engineering design, specifically the concept of artificial limbs. Students relate the skeleton as a structural system, focusing on the leg as structural necessity. They learn about the design considerations involved in the creation of artificial limbs, including materials and sensors.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Engineering Brainstorming
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as an engineering consulting firm with the task to design and sell their idea for a new vehicle power system. During the brainstorming activity (Generate Ideas), students determine and comprehend what type of information is important to learn in order to accomplish the task. Then they watch several video clips as part of the Multiple Perspectives phase. The new input contributes to changing and focusing their original ideas.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
Engineering Physics I (PHYS 221)
Unrestricted Use
CC BY
Rating
0.0 stars

This course covers the major topics of mechanics, including momentum and energy conservation, kinematics, Newton‰ŰŞs laws and equilibrium. The major emphasis is to develop critical analysis, problem solving and scientific reasoning skills by considering numerous different systems and interactions, solving problems and discussion. It uses a systematic approach based on modeling systems by application of basic physics principles, making assumptions, utilizing multiple representations (not just mathematical) in order to become proficient at problem solving. Lab work is required and is designed to help students develop a questioning approach to physical situations, distinguishing the significant behaviors from the less significant behaviors of a system under study.Login: guest_oclPassword: ocl

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Full Course
Homework/Assignment
Lesson Plan
Reading
Simulation
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
10/31/2011