Updating search results...

Search Resources

2825 Results

View
Selected filters:
  • Applied Science
Surgical Device Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit focuses on teaching students about the many aspects of biomedical engineering (BME). Students come to see that BME is a broad field that relies on concepts from many engineering disciplines. They also begin to understand some of the special considerations that must be made when dealing with the human body. Activities and class discussions encourage students to think as engineers to come up with their own solutions to some of medical challenges that have been solved throughout the history of BME. Class time iincludes brainstorming and presenting ideas to the class for discussion. Specific activities include examination of the material properties and functions of surgical instruments and prosthetics, a simulation of the training experience of a surgical resident, and an investigation of the properties of fluid flow in vascular tissue.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alice Hammer
Date Added:
09/18/2014
Surgical Resident for a Day
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as surgical residents for the day. Working in teams, they use surgical instruments to complete tasks that are inside of a box, hidden from direct view. They are able to see inside of the box with the help of a "laparoscope" (webcam and flashlight). This engaging activity shows students one application of engineered medical instrumentation and gives them first-hand experience in seeing how form fits function. They also learn that an engineer's job does not end with a finished product because s/he must train others to use the device correctly.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily McDowell
Date Added:
09/18/2014
Survey of Environmental Science (ENVS 100)
Unrestricted Use
CC BY
Rating
0.0 stars

This is a survey course in which we will discuss the science behind historical and current environmental issues. We will discuss the major threats to biodiversity and ecosystem function. We will study how human activities have affected the limited resources of our planet. We will learn how air, water and soil degradation have affected human health. Lastly, we will explore the emerging field of sustainability, what it means, and how it is being applied in todayęs world.

Subject:
Applied Science
Environmental Science
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
07/14/2021
Survival Skills for Researchers: The Responsible Conduct of Research, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Provides graduate students and fellows with techniques that enhance both validity and responsible conduct in scientific practice. Topics include study design, laboratory practice, treatment of data, human and animal research, intellectual property, preparation of proposals, research papers, posters, and oral presentations. Also discussed are mentoring relationships and career options. Aspects of responsible research conduct are integrated as appropriate to the specific topic under discussion. Subject satisfies the training grant requirements of the NIH for education in the responsible conduct of research. This course is designed to provide graduate students and postdoctoral associates with techniques that enhance both validity and responsible conduct in scientific practice. Lectures present practical steps for developing skills in scientific research and are combined with discussion of cases. The course covers study design, preparation of proposals and manuscripts, peer review, authorship, use of humans and non-human animals in research, allegations of misconduct, and intellectual property. Also discussed are mentoring relationships and career options. Aspects of responsible research conduct are integrated into lectures and case discussion as appropriate to the specific topic. This course also satisfies the training grant requirements of the NIH for education in the responsible conduct of research.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bird, Stephanie J.
Mallalieu, Sandra
Date Added:
01/01/2003
Survival of the Fittest: Competing Evolved & Engineered Digital Organisms
Read the Fine Print
Educational Use
Rating
0.0 stars

Students engineer and evolve digital organisms with the challenge to produce organisms with the highest fitness values in a particular environment. They do this through use of the free Avida-ED digital evolution software application. The resulting organisms compete against each other in the same environment and students learn the benefits of applying the principles of natural selection to solve engineering design problems.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeff Farell
Wendy Johnson
Date Added:
09/18/2014
Survive That Tsunami!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a table-top-sized tsunami generator to observe the formation and devastation of a tsunami. They see how a tsunami moves across the ocean and what happens when it reaches the continental shelf. Students make villages of model houses and buildings to test how different material types are impacted by the huge waves. They further discuss how engineers design buildings to survive tsunamis. Much of this activity setup is the same as for the Mini-Landscape activity in Lesson 4 of the Natural Disasters unit.

Subject:
Applied Science
Engineering
Oceanography
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Geoffrey Hill
Malinda Schaefer Zarske
Date Added:
10/14/2015
Sustainability: A Comprehensive Foundation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

With "Sustainability: A Comprehensive Foundation", first and second-year college students are introduced to this expanding new field, comprehensively exploring the essential concepts from every branch of knowldege Đ including engineering and the applied arts, natural and social sciences, and the humanities. As sustainability is a multi-disciplinary area of study, the text is the product of multiple authors drawn from the diverse faculty of the University of Illinois: each chapter is written by a recognized expert in the field. This text is designed to introduce the reader to the essential concepts of sustainability. This subject is of vital importance seeking as it does to uncover the principles of the long-term welfare of all the peoples of the planet but is only peripherally served by existing college textbooks.

Subject:
Applied Science
Environmental Science
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax CNX
Author:
Amid Khodadoust
Amy Ando
Andrew Leakey
Angela Kent
Cindy Klein-Banai
David Grimley
Dennis Ruez
Eric Snodgrass
Eugene Goldfarb
George Crabtree
Gillen Wood
Jeffrey Brawn
John Cuttica
John Regalbuto
Jonathan Tomkin
Julie Cidell
Krishna Reddy
Martin Jaffe
Michael Ward
Riza Kizilel
Rob Kanter
Said Al-Hallaj
Serap Erdal
Sohail Murad
Steve Altaner
Tom Theis
Date Added:
10/08/2012
Sustainable Design and Technology Research Workshop, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This workshop investigates the current state of sustainability in regards to architecture, from the level of the tectonic detail to the urban environment. Current research and case studies will be investigated, and students will propose their own solutions as part of the final project.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Ecology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Glicksman, Leon R.
Date Added:
01/01/2004
Sustainable Development for Engineers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

By independent study of the book Sustainable Development for Engineers (K.F. Mulder, 2006) students acquire basic knowledge about sustainable development

Subject:
Applied Science
Engineering
Material Type:
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
L. M. Kamp
Date Added:
02/26/2016
Sustainable Energy: Can Water be the Future Fuel?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main objective of this video lesson is to bring the students' attention to the importance of basic and natural sciences in our lives. The lesson will introduce a topic (sustainable energy) that is related mainly to chemistry and is not usually covered directly in a high school curriculum. We hope that this lesson will show students how important and useful the natural and basic sciences are not only for our daily lives, but also for sustainable development. The lesson will present creative and challenging ideas on the topic of alternative energies. It is hoped that students will be inspired by the introduction of these ideas, and that they will develop the confidence to come up with creative ideas themselves. Background for this lesson is based on fundamental concepts in chemistry (mainly), biology, physics and environmental science.

Subject:
Applied Science
Chemistry
Environmental Science
Physical Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Ahmad Al-Ajlouni
Date Added:
07/02/2021
Sustainable Energy: Design A Renewable Future
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A transition to sustainable energy is needed for our climate and welfare. In this engineering course, you will learn how to assess the potential for energy reduction and the potential of renewable energy sources like wind, solar and biomass. You’ll learn how to integrate these sources in an energy system, like an electricity network and take an engineering approach to look for solutions and design a 100% sustainable energy system.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. Arno Smets
Date Added:
07/14/2021
Sustainable Hydrogen and Electrical Energy Storage
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course aims to give insight in the chain of hydrogen production, storage and use, and the devices involved. Electrical storage in the form of batteries will be discussed. Physical and materials science advances that are required to bring forward hydrogen and batteries as energy carriers will be highlighted.

Subject:
Applied Science
Engineering
Material Type:
Assessment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr. F.M. Mulder
Date Added:
02/08/2016
Sustainable Packaging in a Circular Economy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

It has become almost impossible to imagine what our lives would be like without the many benefits of packaging – just think about the different packaging and single-use items you use on a daily basis. Yet as our global population grows in size and affluence, both our collective demand for packaging materials and the waste we generate as a result will increase dramatically.

Currently, large amounts of packaging waste escape formal collection and recycling systems and eventually end up polluting the environment. Moreover, their material value is forever lost to the economy. The Ellen MacArthur Foundation estimates that uncollected plastic packaging waste alone is worth somewhere between 80 to 120 billion dollars a year.

So how can we improve packaging systems in order to capture this wasted potential? Clearly, the way we currently design, recover, and reuse packaging urgently needs a rethink!

In this course, you will learn about the design of sustainable packaging systems. To do so we will explore the design and business strategies of the circular economy.

Contrary to our current industrial model, which extracts, uses and ultimately disposes of resources, a circular economy is regenerative by design. This means that products and services are reimagined from a systems perspective in order to minimize waste, maximize positive economic, environmental and social impacts, and keep resources locked in a cycle of restoration.

This course is for you if you are interested in learning about sustainable packaging design. You’ll also benefit if you are a professional in the packaging industry and want to learn how to find circular opportunities in your work. Students – particularly in design – will be able to broaden their knowledge of circular design and business strategies.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Ir. J. De Hoop
Ir. J. Nelissen
Ir. J. Vlugter
Prof.dr. A.R. Balkenende
Prof.dr.ir. C.A. Bakker
Date Added:
07/14/2021
A Sustainable Transportation Plan for MIT, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This seminar-style class will focus on evaluating and recommending alternative commuter and business-related transportation policies for the MIT campus. Emphasis will be placed on reducing transportation-related energy usage in a sustainable manner in response to President Hockfield's "Walk the Talk" energy initiative. Students will explore the relative roles of MIT and the MBTA as transportation providers, as well as the efficiency and effectiveness of related subsidy policies currently in place for all modes of transportation.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Attanucci, John
Date Added:
01/01/2007
Sustainable Urban Development
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Did you know that cities take up less than 3% of the earth’s land surface, but more than 50% of the world’s population live in them? And, cities generate more than 70% of the global emissions? Large cities and their hinterlands (jointly called metropolitan regions) greatly contribute to global urbanization and sustainability challenges, yet are also key to resolving these same challenges.

If you are interested in the challenges of the 21st century metropolitan regions and how these can be solved from within the city and by its inhabitants, then this Sustainable Urban Development course is for you!

There are no simple solutions to these grand challenges! Rather the challenges cities face today require a holistic, systemic and transdisciplinary approach that spans different fields of expertise and disciplines such as urban planning, urban design, urban engineering, systems analysis, policy making, social sciences and entrepreneurship.

This MOOC is all about this integration of different fields of knowledge within the metropolitan context. The course is set up in a unique matrix format that lets you pursue your line of interest along a specific metropolitan challenge or a specific theme.

Because we are all part of the challenges as well as the solutions, we encourage you to participate actively! You will have the opportunity to explore the living conditions in your own city and compare your living environment with that of the global community.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Arjan van Timmeren
Huub Rijnaarts
Mariette Overschie
Date Added:
07/14/2021
Sustainable Urban Freight Transport: a Global Perspective
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Life in the city relies on the smooth operation of urban logistics. Everything from retail to services, construction to waste collection rely on an efficient and reliable freight transport system. However, with the increasing pressures of urbanization, this has to be balanced with the environmental and social impacts caused by transport activity. This is the challenge of City Logistics, a field of study that has significant practical implications for the world and the cities we live in. It is not merely a question of what is involved, but what can be done about urban freight transport to improve it for the sake of economic efficiency, quality of life, and sustainability.

From a systematic scientific foundation of the field, this course will take you on a journey to learn how city logistics is understood and practiced in cities around the world. Our instructors, members of a renowned global expert network, will teach you the basics of this highly complex social system. Using their experience in real-world projects, they will illustrate how the knowledge learnt in this course is applied across industry and the public sector.

This course caters primarily to university students or professionals working in urban transport infrastructure planning or logistics management. Whether you are simply curious about the topic or you intend to develop a career in these fields, this course will give you the tools you need to understand the complexities of urban freight transport systems.

The course emphasizes the theoretical foundation, the rigorous evaluation, and a multi-disciplinary approach to this complex area. Course participants will benefit from numerous case studies of best practice in selected cities around the world, in a variety of business settings. Our emphasis on the global perspective is particularly relevant, since an understanding of local culture and political climate is an important factor in the success of any city logistics intervention. The course will provide an avenue for students to learn from their peers about the challenges faced in their respective cities, and how to apply the principles learned to the challenges faced in their own cities.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. J.H.R. van Duin
Dr. Johan Joubert
Dr. Russell Thompson
Ir. Tharsis Teoh
Prof.dr.ir. L.A. Tavasszy
Date Added:
07/14/2021
Swamp Cooler
Read the Fine Print
Educational Use
Rating
0.0 stars

Using a household fan, cardboard box and paper towels, student teams design and build their own evaporative cooler prototype devices. They learn about the process that cools water during the evaporation of water. They make calculations to determine a room's cooling load, and thus determine the swamp cooler size. This activity adds to students' understanding of the behind-the-scenes mechanical devices that condition and move air within homes and buildings for human health and comfort.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
A Sweet Volume: Designing a Jumbo Chocolate Bar Using Polynomials
Read the Fine Print
Educational Use
Rating
0.0 stars

Playing the role of engineers in collaborations with the marketing and production teams in a chocolate factory, students design a container for a jumbo chocolate bar. The projects constraints mean the container has to be a regular trapezoidal prism. The design has to optimize the material used to construct the container; that is, students have to find the dimensions of the container with the maximum volume possible. After students come up with their design, teams present a final version of the product that includes creative branding and presentation. The problem-solving portion of this project requires students to find a mathematical process to express the multiple variables in the prism’s volume formula as a single variable cubic polynomial function. Students then use technology to determine the value for which this function has a maximum and, with this value, find the prism’s optimal dimensions.

Subject:
Algebra
Applied Science
Engineering
Geometry
Mathematics
Measurement and Data
Numbers and Operations
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Miguel R. Ramirez
Date Added:
04/25/2019
Swim to and from the Sea!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the basic biology behind Pacific salmon migration and the many engineered Columbia River dam structures that aid in their passage through the river's hydroelectric dams. Students apply what they learn about the salmon life cycle as they think of devices and modifications that might be implemented at dams to aid in the natural cycle of fish migration, and as they make (hypothetical) Splash Engineering presentations about their proposed fish mitigation solutions for Birdseye River's dam in Thirsty County.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jeff Lyng
Kristin Field
Lauren Cooper
Date Added:
09/18/2014
Swing in Time
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine the motion of pendulums and come to understand that the longer the string of the pendulum, the fewer the number of swings in a given time interval. They see that changing the weight on the pendulum does not have an effect on the period. They also observe that changing the angle of release of the pendulum has negligible effect upon the period.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015