Updating search results...

Search Resources

864 Results

View
Selected filters:
  • Life Science
Anatomy and Physiology I
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Includes the study of the gross and microscopic structure of the systems of the human body with special emphasis on the relationship between structure and function. Integrates anatomy and physiology of cells, tissues, organs, the systems of the human body, and mechanisms responsible for homeostasis.

Subject:
Anatomy/Physiology
Life Science
Material Type:
Full Course
Provider:
Lumen Learning
Provider Set:
Candela Courseware
Date Added:
07/13/2021
Anatomy and Physiology II
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Includes sections on the Endocrine System, the Cardiovascular System, the Lymphatic and Immune System, the Respiratory System, the Digestive System, Nutrition, the Urinary System, the Reproductive System, and Development and Inheritance.

Subject:
Anatomy/Physiology
Life Science
Material Type:
Full Course
Provider:
Lumen Learning
Provider Set:
Candela Courseware
Date Added:
07/13/2021
Anatomy and Physiology I & II (GHC)
Unrestricted Use
CC BY
Rating
0.0 stars

This Open Course is an adaptation of OpenStax Anatomy and Physiology and was created under a Round Nine ALG Textbook Transformation Grant.

Topics covered include:

Chemical Organization
Cellular Organization
Tissue Organization
Integumentary System
Skeletal System
Muscular System
Nervous System
Endocrine System
Cardiovascular System
Lymphatic System
Respiratory System
Digestive System
Reproductive System

Subject:
Anatomy/Physiology
Life Science
Material Type:
Full Course
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Date Added:
06/20/2018
Anatomy and Physiology Video Set (GHC)
Unrestricted Use
CC BY
Rating
0.0 stars

This set of anatomy videos illustrating parts of the human body was created under a Round Eleven Mini-Grant for Ancillary Materials Creation.

Topics include:

Axial Skeleton
Appendicular Skeleton
Muscles
Nervous System
Anatomy of the Senses

Subject:
Anatomy/Physiology
Life Science
Material Type:
Lesson
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Jason Christian
Veronica Morin
Date Added:
06/21/2018
Anatomy and Physiology of Animals
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Veterinary nurses need to have a firm grasp of the normal structure of an animal’s body and how it functions before they can understand the effect diseases and injuries have and the best ways to treat them. This book describes the structure of the animal body and the way in which it works. Animals encountered in normal veterinary practice are used as examples where possible.

Subject:
Anatomy/Physiology
Life Science
Material Type:
Textbook
Provider:
Wikibooks
Author:
Ruth Lawson
Date Added:
07/07/2021
Animal Behavior, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Most of the major categories of adaptive behavior can be seen in all animals. This course begins with the evolution of behavior, the driver of nervous system evolution, reviewed using concepts developed in ethology, sociobiology, other comparative studies, and in studies of brain evolution. The roles of various types of plasticity are considered, as well as foraging and feeding, defensive and aggressive behavior, courtship and reproduction, migration and navigation, social activities and communication, with contributions of inherited patterns and cognitive abilities. Both field and laboratory based studies are reviewed; and finally, human behavior is considered within the context of primate studies.

Subject:
Biology
Ecology
Life Science
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schneider, Gerald
Date Added:
01/01/2013
Animals and Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the classification of animals and animal interactions. Students also learn why engineers need to know about animals and how they use that knowledge to design technologies that help other animals and/or humans. This lesson is part of a series of six lessons in which students use their growing understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Katherine Beggs
Malinda Schaefer Zarske
Date Added:
09/18/2014
Antibiotics, Toxins, and Protein Engineering, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sassanfar, Mandana
Date Added:
01/01/2007
Antioxidant Enzymes: Three or Four Veggies a Day Keeps Aging Away
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this video lesson is to expand the student's knowledge about enzymes by introducing the antioxidant enzymes that are intimately involved in the prevention of cellular damage and eventual slowing of the aging process and prevention of several diseases. Students will learn that natural antioxidant enzymes are manufactured in the body and provide an important defense against free radicals. The topic of free radical action is introduced, covering how they are constantly generated in living cells both by ''accidents of chemistry'' and also by specific metabolic processes.

Subject:
Chemistry
Life Science
Nutrition
Physical Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Sawsan F. Karadsheh
Date Added:
07/02/2021
Archery, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition.

Subject:
Anatomy/Physiology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Silva, Cheryl
Date Added:
01/01/2006
Bacteria Are Everywhere!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of engineering biological organisms and studying their growth to be able to identify periods of fast and slow growth. They learn that bacteria are found everywhere, including on the surfaces of our hands. Student groups study three different conditions under which bacteria are found and compare the growth of the individual bacteria from each source. In addition to monitoring the quantity of bacteria from differ conditions, they record the growth of bacteria over time, which is an excellent tool to study binary fission and the reproduction of unicellular organisms.

Subject:
Applied Science
Biology
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jasmin Hume
Date Added:
09/18/2014
Bacteria Transformation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
Date Added:
09/18/2014
Basic Cell and Molecular Biology 3e: What We Know & How We Found Out
Unrestricted Use
CC BY
Rating
0.0 stars

A grasp of the logic and practice of science is essential to understand the rest of the world around us. To that end, the CMB3e iText (like earlier editions) remains focused on experimental support for what we know about cell and molecular biology, and on showing students the relationship of cell structure and function. Rather than trying to be a comprehensive reference book, CMB3e selectively details investigative questions, methods and experiments that lead to our understanding of cell biology. This focus is nowhere more obvious than in the chapter learning objectives and in external links to supplementary material. The Basic CMB3e version of the iText includes links to external web-sources as well as the author’s short, just-in-time YouTube VOPs (with edited, optional closed captions), all embedded in or near relevant text. Each video is identified with a descriptive title and video play and QR bar codes.

Subject:
Biology
Life Science
Material Type:
Textbook
Provider:
University of Wisconsin-Milwaukee
Provider Set:
University of Wisconsin-Milwaukee Digital Commons
Author:
Gerald Bergtrom
Date Added:
07/07/2021
The Basics of General, Organic, and Biological Chemistry
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The Basics of General, Organic, and Biological Chemistry by David W. Ball, John W. Hill, and Rhonda J. Scott is for the one-semester General, Organic and Biological Chemistry course. The authors designed this textbook from the ground up to meet the needs of a one-semester course. It is 20 chapters in length and approximately 350-400 pages; just the right breadth and depth for instructors to teach and students to grasp.

In addition, The Basics of General, Organic, and Biological Chemistry is written not by one chemist, but THREE chemistry professors with specific, complimentary research and teaching areas. David W. Ball's specialty is physical chemistry, John W. Hill's is organic chemistry, and finally, Rhonda J. Scott's background is in enzyme and peptide chemistry. These three authors have the expertise to identify and present only the most important material for students to learn in the GOB Chemistry course.

These experienced authors have ensured their text has ample in-text examples, and ”Test Yourself“ questions following the examples so students can immediately check their comprehension. The end-of-chapter exercises will be paired, with one answered in the back of the text so homework can easily be assigned and self-checked.

The Basics of General, Organic, and Biological Chemistry by David W. Ball, John W. Hill, and Rhonda J. Scott is the right text for you and your students if you are looking for a GOB textbook with just the right amount of coverage without overdoing the concepts and overwhelming your students.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Textbook
Author:
Dr. John W. Hill
Dr. Rhonda J. Scott
Dr. David W. Ball
Date Added:
01/10/2023
Bees: The Invaluable Master Pollinators
Read the Fine Print
Educational Use
Rating
0.0 stars

The study of biomimicry and sustainable design promises great benefits in design applications, offering cost-effective, resourceful, non-polluting avenues for new enterprise. An important final caveat for students to understand is that once copied, species are not expendable. Biomimicry is intended to help people by identifying natural functions from which to pattern human-driven services. Biomimicry was never intended to replace species. Ecosystems remain in critical need of ongoing protection and biodiversity must be preserved for the overall health of the planet. This activity addresses the negative ramifications of species decline. For example, pollinators such as bees are a vital work force in agriculture. They perform an irreplaceable task in ensuring the harvest of most fruit and vegetable crops. In the face of the unexplained colony collapse disorder, we are only now beginning to understand how invaluable these insects are in keeping food costs down and even making the existence of these foods possible for humans.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Wendy J. Holmgren
Date Added:
09/18/2014
Behavioral Pharmacology - From Basic to Clinical Research
Unrestricted Use
CC BY
Rating
0.0 stars

Behavioral pharmacology studies the biological bases of behavior and the pharmacological effects of natural or synthetic drugs through behavioral analysis, with the identification of substances that could contribute to improvement of the quality of life for humans. Through behavioral pharmacology, it is possible to generate knowledge about pharmacological bases that influence the normal or altered behavior from a multidisciplinary point of view, and which includes diverse areas of science. The purpose of this book “Behavioral Pharmacology- From Basic to Clinical Research” is to show some of the advances in the identification of pharmacological properties of natural and synthetic molecules that may be used in the development of pharmacological therapies destined for the treatment of illness and disorders that affect the wellness of humans.

Subject:
Biology
Life Science
Nutrition
Material Type:
Textbook
Author:
Juan Francisco Rodríguez-Landa
Jonathan Cueto-Escobedo
Date Added:
12/27/2022
The Benefits of Biodiversity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students toss coins to determine what traits a set of mouse parents possess, such as fur color, body size, heat tolerance, and running speed. Then they use coin tossing to determine the traits a mouse pup born to these parents possesses. Then they compare these physical features to features that would be most adaptive in several different environmental conditions. Finally, students consider what would happen to the mouse offspring if those environmental conditions were to change: which mice would be most likely to survive and produce the next generation?

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Bio-Engineering: Making and Testing Model Proteins
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as if they are biological engineers following the steps of the engineering design process to design and create protein models to replace the defective proteins in a child’s body. Jumping off from a basic understanding of DNA and its transcription and translation processes, students learn about the many different proteins types and what happens if protein mutations occur. Then they focus on structural, transport and defense proteins during three challenges posed by the R&D; bio-engineering hypothetical scenario. Using common classroom supplies such as paper, tape and craft sticks, student pairs design, sketch, build, test and improve their own protein models to meet specific functional requirements: to strengthen bones (collagen), to capture oxygen molecules (hemoglobin) and to capture bacteria (antibody). By designing and testing physical models to accomplish certain functional requirements, students come to understand the relationship between protein structure and function. They graph and analyze the class data, then share and compare results across all teams to determine which models were the most successful. Includes a quiz, three worksheets and a reference sheet.

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Beth Podoll
Lauren Sako
Date Added:
06/07/2018