Updating search results...

Search Resources

2097 Results

View
Selected filters:
  • Full Course
Social Visualization, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Supplementary work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff. From the course home page: Millions of people are on-line today and the number is rapidly growing - yet this virtual crowd is often invisible. In this course we will examine ways of visualizing people, their activities and their interactions. Students will study the cognitive and cultural basis for social visualization through readings drawn from sociology, psychology and interface design and they will explore new ways of depicting virtual crowds and mapping electronic spaces through a series of design exercises.

Subject:
Arts and Humanities
Psychology
Social Science
Sociology
Visual Arts
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Donath, Judith
Date Added:
01/01/2004
Social and Political Implications of Technology, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a graduate reading seminar, in which historical and contemporary studies are used to explore the interaction of technology with social and political values. Emphasis is on how technological devices, structures, and systems influence the organization of society and the behavior of its members. Examples are drawn from the technologies of war, transportation, communication, production, and reproduction.

Subject:
Arts and Humanities
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Smith, Merritt
Date Added:
01/01/2006
The Society of Mind, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to the theory that tries to explain how minds are made from collections of simpler processes. It treats such aspects of thinking as vision, language, learning, reasoning, memory, consciousness, ideals, emotions, and personality. It incorporates ideas from psychology, artificial intelligence, and computer science to resolve theoretical issues such as wholes vs. parts, structural vs. functional descriptions, declarative vs. procedural representations, symbolic vs. connectionist models, and logical vs. common-sense theories of learning.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Minsky, Marvin
Date Added:
01/01/2007
The Sociology of Strategy, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This seminar provides an introduction to scholarship in a growing research community: the sociologists and sociologically-inclined organization theorists who study issues that relate, at least in a broad sense, to the interdisciplinary field of inquiry that is known as "strategy" or "strategic management" research. The course is not designed to survey the field of strategy. Rather, the focus is on getting a closer understanding of the recent work by sociologists and sociologically-oriented organization theorists that investigates central questions in strategic management. In particular, we will be concerned with identifying and assessing sociological work that aims to shed light on: (a) relative firm performance; (b) the nature of competition and market interaction; (c) organizational capabilities; (d) the beginnings of industries and firms; (e) the diffusion of transfer of ideas and practices across firms; and (f) strategic change.

Subject:
Business and Communication
Social Science
Sociology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sivan, Ezra Zuckerman
Date Added:
01/01/2005
Software Engineering Concepts, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A reading and discussion subject on advanced topics in the engineering of software systems. Focus on software development. Topics differ but are chosen from: software process and lifecycle; requirements development, specification and analysis; design principles; testing, formal analysis, and reviews; quality management and assessment; product and process metrics; COTS and reuse; evolution and maintenance; team organization and people management; software engineering aspects of programming languages; and software psychology. Prerequisite is basic knowledge of programming and an introductory class in software engineering. The second prerequisite can be waived with permission of the instructor and additional background reading.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Leveson, Nancy
Date Added:
01/01/2005
Soil Behavior, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Detailed study of soil properties with emphasis on interpretation of field and laboratory test data and their use in soft-ground construction engineering. Includes: consolidation and secondary compression; basic strength principles; stress-strain strength behavior of clays, emphasizing effects of sample disturbance, anisotropy, and strain rate; strength and compression of granular soils; and engineering properties of compacted soils. Some knowledge of field and laboratory testing assumed.

Subject:
Ecology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Jen, Lucy
Date Added:
01/01/2005
Solar Cells
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Advanced semiconductor devices are a new source of energy for the 21st century, delivering electricity directly from sunlight. Suitable semiconductor materials, device physics, and fabrication technologies for solar cells are presented in this course. The guidelines for design of a complete solar cell system for household application are explained. Cost aspects, market development, and the application areas of solar cells are presented.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. Miro Zeman
Date Added:
07/14/2021
Solar Energy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course Solar Energy will teach you to design a complete photovoltaic system. The course will introduce you to the technology that converts solar energy into electricity, heat and solar fuels with a main focus on electricity generation. Photovoltaic (PV) devices are presented as advanced semiconductor devices that deliver electricity directly from sunlight. The emphasis is on understanding the working principle of a solar cell, fabrication of solar cells, PV module construction and the design of a PV system. You will understand the principles of the photovoltaic conversion (the conversion of light into electricity). You will learn about the advantages, limitations and challenges of different solar cell technologies, such as crystalline silicon solar cell technology, thin film solar cell technologies and the latest novel solar cell concepts as studied on lab-scale. The course will treat the specifications of solar modules and show you how to design a complete solar system for any particular application. The suitable semiconductor materials, device physics, and fabrication technologies for solar cells are presented. The guidelines for design of a complete solar cell system for household application are explained. Alternative storage approaches through solar fuels or conversion of solar energy in to heat will be discussed. The cost aspects, market development, and the application areas of solar cells are presented.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. A.H.M. Smets
Date Added:
02/05/2016
Solar Energy Engineering: Photovoltaic Energy Conversion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The key factor in getting more efficient and cheaper solar energy panels is the advance in the development of photovoltaic cells. In this course you will learn how photovoltaic cells convert solar energy into useable electricity. You will also discover how to tackle potential loss mechanisms in solar cells. By understanding the semiconductor physics and optics involved, you will develop in-depth knowledge of how a photovoltaic cell works under different conditions. You will learn how to model all aspects of a working solar cell. For engineers and scientists working in the photovoltaic industry, this course is an absolute must to understand the opportunities for solar cell innovation.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. René van Swaaij
Dr.ir. Arno Smets
Prof. dr. ir. Miro Zeman
Date Added:
07/14/2021
Solar Energy: Integration of Photovoltaic Systems in Microgrids
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Photovoltaic systems are often placed into a microgrid, a local electricity distribution system that is operated in a controlled way and includes both electricity users and renewable electricity generation. This course deals with DC and AC microgrids and covers a wide range of topics, from basic definitions, through modelling and control of AC and DC microgrids to the application of adaptive protection in microgrids. You will master various concepts related to microgrid technology and implementation, such as smart grid and virtual power plant, types of distribution network, markets, control strategies and components. Among the components special attention is given to operation and control of power electronics interfaces.

You will familiarize yourself with the advantages and challenges of DC microgrids (which are still in an early stage). You will have the opportunity to master the topic of microgrids through an exercise in which you will evaluate selected pilot sites where microgrids were deployed. The evaluation will take the form of a simulation assignment and include a peer review of the results.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. L. Ramirez Elizondo
dr. Pavol Bauer
Date Added:
07/14/2021
Solar Energy: Photovoltaic (PV) Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course participants will learn how to turn solar cells into full modules; and how to apply full modules to full photovoltaic systems.

The course will widely cover the design of photovoltaic systems, such as utility scale solar farms or residential scale systems (both on and off the grid). You will learn about the function and operation of various components including inverters, batteries, DC-DC converters and their interaction with both the modules and the grid.

After learning about the components, learners will be able to correctly apply them during main design steps taken when planning a real PV installation with excellent performance and reliability.

Through modelling, you will gain a deeper understanding of PV systems performance for different solar energy applications, and proficiency in estimating the energy yield of a client’s potential system.

This course is part of the Solar Energy Engineering MicroMasters Program designed to cover all physics and engineering aspects of photovoltaics: photovoltaic energy conversion, technologies and systems.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. R.A. Vasudevan
Ir. O. Isabella
Date Added:
07/14/2021
Solar Energy: Photovoltaic (PV) Technologies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The technologies used to produce solar cells and photovoltaic modules are advancing to deliver highly efficient and flexible solar panels. In this course you will explore the main PV technologies in the current market. You will gain in-depth knowledge about crystalline silicon based solar cells (90% market share) as well as other up and coming technologies like CdTe, CIGS and Perovskites. This course provides answers to the questions: How are solar cells made from raw materials? Which technologies have the potential to be the major players for different applications in the future?

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. Arno Smets
Prof. dr. ir. Miro Zeman
Date Added:
07/14/2021
Solar System!
Read the Fine Print
Educational Use
Rating
0.0 stars

An introduction to our solar system the planets, our Sun and Moon. To begin, students learn about the history and engineering of space travel. They make simple rockets to acquire a basic understanding Newton's third law of motion. They explore energy transfer concepts and use renewable solar energy for cooking. They see how engineers design tools, equipment and spacecraft to go where it is too far and too dangerous for humans. They explore the Earth's water cycle, and gravity as applied to orbiting bodies. They learn the steps of the design process as they create their own models of planetary rovers made of edible parts. Students conduct experiments to examine soil for signs of life, and explore orbit transfers. While studying about the International Space Station, they investigate the realities of living in space. Activities explore low gravity on human muscles, eating in microgravity, and satellite tracking. Finally, students learn about the context of our solar system the universe as they learn about the Hubble Space Telescope, celestial navigation and spectroscopy.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
The Solar System, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an introduction to the study of the solar system with emphasis on the latest spacecraft results. The subject covers basic principles rather than detailed mathematical and physical models. Topics include: an overview of the solar system, planetary orbits, rings, planetary formation, meteorites, asteroids, comets, planetary surfaces and cratering, planetary interiors, planetary atmospheres, and life in the solar system.

Subject:
Astronomy
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Binzel, Richard
Date Added:
01/01/2006
Solid Mechanics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

1.050 is a sophomore-level engineering mechanics course, commonly labeled "Statics and Strength of Materials" or "Solid Mechanics I." This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.

Subject:
Applied Science
Environmental Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bucciarelli, Louis
Date Added:
01/01/2004
Solid Mechanics Laboratory, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces students to basic properties of structural materials and behavior of simple structural elements and systems through a series of experiments. Students learn experimental technique, data collection, reduction and analysis, and presentation of results.

Subject:
Applied Science
Environmental Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bucciarelli, Louis
Date Added:
01/01/2003
Solid-State Circuits, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.301 is a course in analog circuit analysis and design. We cover the tools and methods necessary for the creative design of useful circuits using active devices. The class stresses insight and intuition, applied to the design of transistor circuits and the estimation of their performance. We concentrate on circuits using the bipolar junction transistor, but the techniques that we study can be equally applied to circuits using JFETs, MOSFETs, MESFETs, future exotic devices, or even vacuum tubes.

Subject:
Applied Science
Information Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Roberge, James
Date Added:
01/01/2010
Solving Complex Problems, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

12.000 Solving Complex Problems is designed to provide students the opportunity to work as part of a team to propose solutions to a complex problem that requires an interdisciplinary approach. For the students of the class of 2013, 12.000 will revolve around the issues associated with what we can and must do about the steadily increasing amounts CO2 in Earth's atmosphere.Each year's class explores a different problem in detail through the study of complementary case histories and the development of creative solution strategies. It includes training in Web site development, effective written and oral communication, and team building. Initially developed with major financial support from the d'Arbeloff Fund for Excellence in Education, 12.000 is designed to enhance the freshman experience by helping students develop contexts for other subjects in the sciences and humanities, and by helping them to establish learning communities that include upperclassmen, faculty, MIT alumni, and professionals in science and engineering fields.

Subject:
Business and Communication
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bowring, Samuel
Date Added:
01/01/2009
Sound and Light
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are provided with an understanding of sound and light waves through a "sunken treasure" theme a continuous storyline throughout the lessons. In the first five lessons, students learn about sound, and in the rest of the lessons, they explore light concepts. To begin, students are introduced to the concepts of longitudinal and transverse waves. Then they learn about wavelength and amplitude in transverse waves. In the third lesson, students learn about sound through the introduction of frequency and how it applies to musical sounds. Next, they learn all about echolocation what it is and how engineers use it to "see" things in the dark or deep underwater. The last of the five sound lessons introduces acoustics; students learn how different materials reflect and absorb sound.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
South Asian Migrations, Spring 2018
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a global history of South Asians and introduces students to the cultural, social, economic, and political experiences of immigrants who traveled across the world. It studies how and why South Asians, who have migrated to America, Europe, Africa, the Caribbean and the Middle East, are considered a model minority in some countries and unwanted strangers in others. Through literature, memoirs, films, music, and historical writing, it follows South Asian migrants as they discovered the world beyond India, Pakistan, and Bangladesh.

Subject:
Social Science
Sociology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sana Aiyar
Date Added:
01/01/2018