Updating search results...

Search Resources

1582 Results

View
Selected filters:
  • education
Stock Swaps, Variation 3
Unrestricted Use
CC BY
Rating
0.0 stars

This is a multi-step problem since it requires more than two steps no matter how it is solved. The problem is not scaffolded for the student, but each step is straightforward and should follow from the previous with a careful reading of the problem.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Straw Bridges
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as engineering teams, students design and create model beam bridges using plastic drinking straws and tape as their construction materials. Their goal is to build the strongest bridge with a truss pattern of their own design, while meeting the design criteria and constraints. They experiment with different geometric shapes and determine how shapes affect the strength of materials. Let the competition begin!

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Strawkets and Control
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the effect that fins have on rocket flight. Students construct two paper rockets that they can launch themselves by blowing through a straw. One "strawket" has wings and the other has fins. Students observe how these two control surfaces affect the flight of their strawkets. Students discover how difficult control of rocket flight is and what factors can affect it.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Strawkets and Thrust
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the effect that thrust has on rocket flight. Students will make two paper rockets that they can launch themselves by blowing through a straw. These "strawkets" will differ in diameter, such that students will understand that a rocket with a smaller exit nozzle will provide a larger thrust. Students have the opportunity to compare the distances traveled by their two strawkets after predicting where they will land. Since each student will have a slightly different rocket and launching technique, they will observe which factors contribute to a strawket's thrust and performance.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Strawkets and Weight
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the effect that weight has on rocket flight. Students construct a variety of their own straw-launched rockets, or "strawkets," that have different weights. Specifically, they observe what happens when the weight of a strawket is altered by reducing its physical size and using different construction materials. Finally, the importance of weight distribution in a rocket is determined.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Stream Consciousness
Read the Fine Print
Educational Use
Rating
0.0 stars

During this activity, students will learn how environmental engineers monitor water quality in resource use and design. They will employ environmental indicators to assess the water quality of a nearby stream. Students will make general observations of water quality as well as count the number of macroinvertabrates. They will then use the information they collected to create a scale to rate how good or bad the water quality of the stream. Finally, the class will compare their numbers and discuss and defend their results.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
09/18/2014
Street-Fighting Mathematics, January (IAP) 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course teaches the art of guessing results and solving problems without doing a proof or an exact calculation. Techniques include extreme-cases reasoning, dimensional analysis, successive approximation, discretization, generalization, and pictorial analysis. Applications include mental calculation, solid geometry, musical intervals, logarithms, integration, infinite series, solitaire, and differential equations. (No epsilons or deltas are harmed by taking this course.) This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subject:
Education
Mathematics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mahajan, Sanjoy
Mahajan, Sanjoy, 1969-
Date Added:
01/01/2008
String Telephones
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate how sound travels through string and air. First, they analyze the sound waves with a paper cup attached to a string. Then, they combine the string and cup with a partner to model a string telephone. Finally, they are given a design challenge to redesign the string telephone for distance. They think about their model as it compares a modern telephone and the impact the invention of the telephone has had on society.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
Date Added:
10/14/2015
The Strongest Strongholds
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work together in small groups, while competing with other teams, to explore the engineering design process through a tower building challenge. They are given a set of design constraints and then conduct online research to learn basic tower-building concepts. During a two-day process and using only tape and plastic drinking straws, teams design and build the strongest possible structure. They refine their designs, incorporating information learned from testing and competing teams, to create stronger straw towers using fewer resources (fewer straws). They calculate strength-to-weight ratios to determine the winning design.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeff Kessler
Date Added:
10/14/2015
Strum Along
Read the Fine Print
Educational Use
Rating
0.0 stars

Music and sound are two different concepts that share much in common. Determining the difference between the two can sometimes be difficult due to the subjective nature of deciding what is or is not music. The goal of this activity is to take something constructed by students, that would be normally classified as just sound and have the class work together to make what can be perceived to be music. Students construct basic stringed instruments made of shoeboxes and rubber bands. This activity aims to increase student understanding of what distinguishes music from sound.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daniel Choi
Date Added:
10/14/2015
Students as Scientists
Read the Fine Print
Educational Use
Rating
0.0 stars

Through two lessons and their associated activities, students do the work of scientists by designing their own experiments to answer questions they generate. Through a simple activity involving surface tension, students learn what a hypothesis is—and isn't—and why generating a hypothesis is an important aspect of the scientific method. In the second activity, with bubble gum to capture their interest, students learn to design and conduct controlled experiments to answer their own questions about the amounts of sugar (or artificial sweetener) in bubble or chewing gum.

Subject:
Education
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Sudsy Cells
Read the Fine Print
Educational Use
Rating
0.0 stars

Students culture cells in order to find out which type of surfactant (in this case, soap) is best at removing bacteria. Groups culture cells from unwashed hands and add regular bar soap, regular liquid soap, anti-bacterial soap, dishwasher soap, and hand sanitizer to the cultures. The cultures are allowed to grow for two days and then the students assess which type of soap design did the best job of removing bacteria cells from unwashed hands. Students extend their knowledge of engineering and surfactants for different environmental applications.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
10/14/2015
Sugar Spill!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students act as environmental engineers involved with the clean up of a toxic spill. Using bioremediation as the process, students select which bacteria they will use to eat up the pollutant spilled. Students learn how engineers use bioremediation to make organism degrade harmful chemicals. Engineers must make sure bacteria have everything they need to live and degrade contaminants for bioremediation to happen. Students learn about the needs of living things by setting up an experiment with yeast. The scientific method is reinforced as students must design the experiment themselves making sure they include a control and complete parts of a formal lab report.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Karen King
Kate Beggs
Melissa Straten
Date Added:
10/14/2015
Sugar in Six Cans of Soda
Unrestricted Use
CC BY
Rating
0.0 stars

This task provides a familiar context allowing students to visualize multiplication of a fraction by a whole number. This task could form part of a very rich activity which includes studying soda can labels.

Subject:
Mathematics
Numbers and Operations
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
08/21/2012
Sum of Angles in a Polygon
Unrestricted Use
CC BY
Rating
0.0 stars

This problem provides students with an opportunity to discover algebraic structure in a geometric context. More specifically, the student will need to divide up the given polygons into triangles and then use the fact that the sum of the angles in each triangle is 180_.

Subject:
Algebra
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/21/2013
Sum of Even and Odd
Unrestricted Use
CC BY
Rating
0.0 stars

Parts (d) and (e) of this task constitute a very advanced application of the skill of making use of structure: in (d) students are being asked to use the defining property of even and odd functions to manipulate expressions involving function notation. In (e) they are asked to see the structure in the system of two equations involving functions.

Subject:
Algebra
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012