Students take advantage of the natural ability of red cabbage juice to …
Students take advantage of the natural ability of red cabbage juice to perform as a pH indicator to test the pH of seven common household liquids. Then they evaluate the accuracy of the red cabbage indicator, by testing the pH of the liquids using an engineer-designed tool, pH indicator strips. Like environmental engineers working on water remediation or water treatment projects, understanding the chemical properties (including pH) of contaminants is important for safeguarding the health of environmental water sources and systems.
Building upon their understanding of forces and Newton's laws of motion, students …
Building upon their understanding of forces and Newton's laws of motion, students learn about the force of friction, specifically with respect to cars. They explore the friction between tires and the road to learn how it affects the movement of cars while driving. In an associated literacy activity, students explore the theme of conflict in literature, and the difference between internal and external conflict, and various types of conflicts. Stories are used to discuss methods of managing and resolving conflict and interpersonal friction.
Through this lab, students are introduced to energy sciences as they explore …
Through this lab, students are introduced to energy sciences as they explore redox reactions and how hydrogen fuel cells turn the energy released when hydrogen and oxygen are combined into electrical energy that can be read on a standard multimeter. They learn about the energy stored in bonds and how, by controlling the reaction, this energy can be turned into more or less useful forms.
There are several tutorials on the page for this link. This review …
There are several tutorials on the page for this link. This review is under the subheading "Momentum and Energy." It is a small group tutorial that leads students through the construction of an understanding of the concept of momentum and its conservation.
A three-semester subject sequence on quantum field theory stressing the relativistic quantum …
A three-semester subject sequence on quantum field theory stressing the relativistic quantum field theories relevant to the physics of the Standard Model. 8.323 is a one-semester self-contained subject in quantum field theory. Concepts and basic techniques are developed through applications in elementary particle physics and condensed matter physics. Includes the basic tools of field theory required for phenomenological studies. Topics: Functional integral formulation of quantum mechanics and many-particle systems. Classical field theory, symmetries, and Noether's theorem. Quantization of scalar fields. Feynman graphs, analytic properties of amplitudes and unitarity of the S-matrix. Renormalization and renormalization group. Spinors and the Dirac equation. Quantization of Dirac fields. Supersymmetry. Quantization of abelian gauge fields. Calculations in quantum electrodynamics. Classical Yang-Mills fields. The Higgs phenomenon and a description of the Standard Model. 8.324 is the second term of the quantum field theory sequence. Develops in depth some of the topics discussed in 8.323 and introduces some advanced material. Topics: Quantization of nonabelian gauge theories. BRST symmetry. Perturbation theory anomalies. Renormalization and symmetry breaking. The renormalization group. Critical exponents and scalar field theory. Conformal field theory. 8.325 is the third and last term of the quantum field theory sequence. Its aim is the proper theoretical discussion of the physic
8.323, Relativistic Quantum Field Theory I, is a one-term self-contained subject in …
8.323, Relativistic Quantum Field Theory I, is a one-term self-contained subject in quantum field theory. Concepts and basic techniques are developed through applications in elementary particle physics, and condensed matter physics.
Normally taken by physics majors in their sophomore year. Einstein's postulates; consequences …
Normally taken by physics majors in their sophomore year. Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; particle collisions. Relativity and electricity; Coulomb's law; magnetic fields. Brief introduction to Newtonian cosmology. Introduction to some concepts of General Relativity; principle of equivalence. The Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, Shapiro delay. This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology.
This is a set of lecture notes for my course Relativity for …
This is a set of lecture notes for my course Relativity for Poets at Fullerton College. It's a nonmathematical presentation of Einstein's theories of special and general relativity, including a brief treatment of cosmology.
In partnership with teachers, the Louisiana Department of Education arranged OpenSciEd (grade …
In partnership with teachers, the Louisiana Department of Education arranged OpenSciEd (grade 6-8 science) content in a manner that stays true to the vision of the materials and provides clear guidance on how to use them in a fully remote environment. The modified materials assume that teachers will have synchronous virtual meetings with students in addition to home learning. The site also provides a variety of resources with options for students who do not have internet access.
In this document, we offer suggestions for developing and maintaining engagement agreements …
In this document, we offer suggestions for developing and maintaining engagement agreements that promote safe student-driven learning experiences in remote learning environments. Remote learning environments might be synchronous experiences enhanced by technology that allows educators and learners to see and talk with each other, asynchronous communications that may or may not be aided by technology, or somewhere in between. When technology is used in remote learning, there will be variation in the skill and comfort level among teachers and students. Whatever approach you use for digital technology, be aware of your district and school policies in selecting tools to use.
Examines the intellectual foundations of the new discipline of deep sea archaeology, …
Examines the intellectual foundations of the new discipline of deep sea archaeology, a convergence of oceanography, archaeology, and engineering. How best are robots and submarines employed for archaeological work? How do new technologies change operations plans, research designs, and archaeological questions? Covers oceanography, history and technology of underwater vehicles, search strategies, technology development, archaeological technique, sociology of scientific knowledge. Case studies of deep-sea projects include the wrecks of the Titanic and Monitor, Roman trading vessels in the Mediterranean, and deep research in the Black Sea.
Learn about the physics of resistance in a wire. Change its resistivity, …
Learn about the physics of resistance in a wire. Change its resistivity, length, and area to see how they affect the wire's resistance. The sizes of the symbols in the equation change along with the diagram of a wire.
Learn about the physics of resistance in a wire. Change its resistivity, …
Learn about the physics of resistance in a wire. Change its resistivity, length, and area to see how they affect the wire's resistance. The sizes of the symbols in the equation change along with the diagram of a wire.
For advanced undergraduate students: Observe resonance in a collection of driven, damped …
For advanced undergraduate students: Observe resonance in a collection of driven, damped harmonic oscillators. Vary the driving frequency and amplitude, the damping constant, and the mass and spring constant of each resonator. Notice the long-lived transients when damping is small, and observe the phase change for resonators above and below resonance.
The discovery of restriction enzymes and their applications in DNA analysis has …
The discovery of restriction enzymes and their applications in DNA analysis has proven to be essential for biologists and chemists. This lesson focuses on restriction enzymes and their applications to DNA analysis and DNA fingerprinting. Use this lesson and its associated activity in conjunction with biology lessons on DNA analysis and DNA replication.
Many of today's popular sports are based around the use of balls, …
Many of today's popular sports are based around the use of balls, yet none of the balls are completely alike. In fact, they are all designed with specific characteristics in mind and are quite varied. Students investigate different balls' abilities to bounce and represent the data they collect graphically.
Watch a reaction proceed over time. How does total energy affect a …
Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.
Watch a reaction proceed over time. How does total energy affect a …
Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.
Students write a biographical sketch of an artist or athlete who lives …
Students write a biographical sketch of an artist or athlete who lives on the edge, riding the gravity wave, to better understand how these artists and athletes work with gravity and manage risk. Note: The literacy activities for the Mechanics unit are based on physical themes that have broad application to our experience in the world concepts of rhythm, balance, spin, gravity, levity, inertia, momentum, friction, stress and tension.
Through this lesson students learn how AM radios work through basic concepts …
Through this lesson students learn how AM radios work through basic concepts about waves and magnetic fields. Waves are first introduced by establishing the difference between transverse and longitudinal waves, as well as identifying the amplitude and frequency of a given waveform. Students then learn general concepts about magnetic fields, leading into how radio waves are created and transmitted. Several demonstrations can be performed in order to help students better understand these concepts. The goal of this lesson is for students to understand how the AM radios built during the associated activity function.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.