Updating search results...

Search Resources

1859 Results

View
Selected filters:
  • Engineering
Measuring Lava Flow
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how volume, viscosity and slope are factors that affect the surface area that lava covers. Using clear transparency grids and liquid soap, students conduct experiments, make measurements and collect data. They also brainstorm possible solutions to lava flow problems as if they were geochemical engineers, and come to understand how the properties of lava are applicable to other liquids.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brittany Enzmann
Date Added:
09/18/2014
Measuring Light Pollution
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of light pollution by investigating the nature, sources and levels of light in their classroom environment. They learn about the adverse effects of artificial light and the resulting consequences on humans, animals and plants: sky glow, direct glare, light trespass, animal disorientation and energy waste. Student teams build light meters using light sensors mounted to LEGO® MINDSTORMS® NXT intelligent bricks and then record and graph the light intensity emitted in various classroom lighting situations. They are introduced to the engineering concepts of sensors, lux or light meter, and lumen and lux (lx) illuminance units. Through this activity, students also learn how to better use light and save energy as well as some of the technologies designed by engineers to reduce light pollution and energy waste.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jerib Carson
Qianqian Lin
Violet Mwaffo
Date Added:
09/18/2014
Measuring Noise Pollution
Read the Fine Print
Educational Use
Rating
0.0 stars

Through investigating the nature, sources and level of noise produced in their environment, students are introduced to the concept of noise pollution. They learn about the undesirable and disturbing effects of noise and the resulting consequences on people's health, as well as on the health of the environment. They use a sound level meter that consists of a sound sensor attached to the LEGO® NXT Intelligent Brick to record the noise level emitted by various sources. They are introduced to engineering concepts such as sensors, decibel (dB) measurements, and sound pressure used to measure the noise level. Students are introduced to impairments resulting from noise exposure such as speech interference, hearing loss, sleep disruption and reduced productivity. They identify potential noise pollution sources, and based on recorded data, they classify these sources into levels of annoyance. Students also explore the technologies designed by engineers to protect against the harmful effects of noise pollution.

Subject:
Applied Science
Ecology
Engineering
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jerib Carson
Qianqian Lin
Violet Mwaffo
Date Added:
09/18/2014
Measuring Our Muscles
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams build model hand dynamometers used to measure grip strengths of people recovering from sports injuries. They use their models to measure how much force their classmates muscles are capable of producing, and analyze the data to determine factors that influence a person's grip strength. They use this information to produce a recommendation of a hand dynamometer design for a medical office specializing in physical therapy. They also consider the many other ways grip strength data is used by engineers to design everyday products.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jake Lewis
Malinda Schaefer Zarske
Date Added:
10/14/2015
Measuring Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn first-hand the relationship between force, area and pressure. They use a force sensor built from a LEGO® MINDSTORMS® NXT kit to measure the force required to break through a paper napkin. An interchangeable top at the end of the force sensor enables testing of different-sized areas upon which to apply pressure. Measuring the force, and knowing the area, students compute the pressure. This leads to a concluding discussion on how these concepts are found and used in engineering and nature.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeffrey Laut
Date Added:
09/18/2014
Measuring Surface Tension
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe capillary action in glass tubes of varying sizes. Then they use the capillary action to calculate the surface tension in each tube. They find the average surface tensions and calculate the statistical errors.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Measuring Viscosity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students calculate the viscosity of various household fluids by measuring the amount of time it takes marble or steel balls to fall given distances through the liquids. They experience what viscosity means, and also practice using algebra and unit conversions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael A. Soltys
Date Added:
09/18/2014
Measuring g
Read the Fine Print
Educational Use
Rating
0.0 stars

Using the LEGO MINDSTORMS(TM) NXT kit, students construct experiments to measure the time it takes a free falling body to travel a specified distance. Students use the touch sensor, rotational sensor, and the NXT brick to measure the time of flight for the falling object at different release heights. After the object is released from its holder and travels a specified distance, a touch sensor is triggered and time of object's descent from release to impact at touch sensor is recorded and displayed on the screen of the NXT. Students calculate the average velocity of the falling object from each point of release, and construct a graph of average velocity versus time. They also create a best fit line for the graph using spreadsheet software. Students use the slope of the best fit line to determine their experimental g value and compare this to the standard value of g.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jennifer Haghpanah
Keeshan Williams
Nicole Abaid
Date Added:
09/18/2014
Mechanical Assembly and Its Role in Product Development, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces mechanical and economic models of assemblies and assembly automation on two levels. "Assembly in the small" comprises basic engineering models of rigid and compliant part mating and explains the operation of the Remote Center Compliance. "Assembly in the large" takes a system view of assembly, including the notion of product architecture, feature-based design and computer models of assemblies, analysis of mechanical constraint, assembly sequence analysis, tolerances, system-level design for assembly and JIT methods, and economics of assembly automation. Case studies and current research included. Class exercises and homework include analyses of real assemblies, the mechanics of part mating, and a semester long project.

Subject:
Applied Science
Architecture and Design
Education
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Whitney, Daniel
Date Added:
01/01/2004
Mechanical Behavior of Plastics, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is aimed at presenting the concepts underlying the response of polymeric materials to applied loads. These will include both the molecular mechanisms involved and the mathematical description of the relevant continuum mechanics. It is dominantly an "engineering" subject, but with an atomistic flavor. It covers the influence of processing and structure on mechanical properties of synthetic and natural polymers: Hookean and entropic elastic deformation, linear viscoelasticity, composite materials and laminates, yield and fracture.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Roylance, David
Date Added:
01/01/2007
Mechanical Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This site contains a broad overview of the mechanical engineering program at the Massachusetts Institute of Technology. It is one of the broadest and most versatile of the engineering professions. The site features lecture notes, assignments, solutions, online textbooks, projects, study groups and exams. This is a nice broad overview of available courses within this program.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/18/2011
Mechanical Engineering Tools, January (IAP) 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces the fundamentals of machine tool and computer tool use. Students work with a variety of machine tools including the bandsaw, milling machine, and lathe. Instruction given on the use of the Athena network and Athena-based software packages including MATLABĺ¨, MAPLEĺ¨, XESSĺ¨, and CAD. Emphasis on problem solving, not programming or algorithmic development. Assignments are project-oriented relating to mechanical engineering topics. It is recommended that students take this subject in the first IAP after declaring the major in Mechanical Engineering. From the course home page: This course was co-created by Prof. Douglas Hart and Dr. Kevin Otto.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hart, Douglas
Date Added:
01/01/2004
Mechanics Map Open Mechanics Textbook
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Open textbook in statics and dynamics for engineering undergraduates. Covers particles and rigid bodies (extended bodies), structures (trusses), simple machines, kinematics, and kinetics, as well as introductory vibrations. Includes text, videos, images, and worked examples (written and video).

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Textbook
Provider:
Adaptive Map Digital Textbook Project
Author:
Agnes d'Entremont
Douglas Miller
Jacob Moore
Joan Kowalski
Majod Chatsaz
Date Added:
07/07/2021
Mechanics and Materials II, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces mechanical behavior of engineering materials, and the use of materials in mechanical design. Emphasizes the fundamentals of mechanical behavior of materials, as well as design with materials. Major topics: elasticity, plasticity, limit analysis, fatigue, fracture, and composites. Materials selection. Laboratory experiments involving projects related to materials in mechanical design. This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Anand, Lallit
Date Added:
01/01/2004
Mechanics of Elastic Solids
Read the Fine Print
Educational Use
Rating
0.0 stars

After conducting the associated activity, students are introduced to the material behavior of elastic solids. Engineering stress and strain are defined and their importance in designing devices and systems is explained. How engineers measure, calculate and interpret properties of elastic materials is addressed. Students calculate stress, strain and modulus of elasticity, and learn about the typical engineering stress-strain diagram (graph) of an elastic material.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa H. Forbes
Date Added:
09/18/2014
Mechatronic System Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Mechatronic system design deals with the design of controlled motion systems by the integration of functional elements from a multitude of disciplines. It starts with thinking how the required function can be realised by the combination of different subsystems according to a Systems Engineering approach (V-model).

Some supporting disciplines, like power-electronics and electromechanics, are not part of the BSc program of mechanical engineers. For this reason this course introduces these disciplines in connection with PID-motion control principles to realise an optimally designed motion system.
The target application for the lectures are motion systems that combine high speed movements with extreme precision.
The course covers the following four main subjects:

Dynamics of motion systems in the time and frequency domain, including analytical frequency transfer functions that are represented in Bode and Nyquist plots.
Motion control with PID-feedback and model-based feed forward control-principles that effectively deal with the mechanical dynamic anomalies of the plant.
Electromechanical actuators, mainly based on the electromagnetic Lorentz principle. Reluctance force and piezoelectric actuators will be shortly presented to complete the overview.
Power electronics that are used for driving electromagnetic actuators.
The fifth relevant discipline, position measurement systems is dealt with in another course: WB2303, Electronics and measurement.
The most important educational element that will be addressed is the necessary knowledge of the physical phenomena that act on motion systems, to be able to critically judge results obtained with simulation software.
The lectures challenge the capability of students to match simulation models with reality, to translate a real system into a sufficiently simplified dynamic model and use the derived dynamic properties to design a suitable, practically realiseable controller.
This course increases the understanding what a position control system does in reality in terms of virtual mechanical properties like stiffness and damping that are added to the mechanical plant by a closed loop feedback controller.

It is shown how a motion system can be analysed and modelled top-down with approximating (scalar) calculations by hand, giving a sufficient feel of the problem to make valuable concept design decisions in an early stage.
With this method students learn to work more efficiently by starting their design with a quick and dirty global analysis to prove feasibility or direct further detailed modelling in specific problem areas.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof ir R.H. Munnig Schmidt
Date Added:
02/23/2016
Mechatronics, Fall 2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. There are significant laboratory-based design experiences. Topics covered in the course include: Low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Trumper, David L.
Date Added:
01/01/2014
Medical Instrumentation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students will discuss the special considerations that must be made when dealing with the human body, and will gain an appreciation for the amazing devices that have improved our quality of life. They will also explore how " čĎForm Fits Function'. This lesson should serve as a starting point for students to begin to ponder how the medical devices in their everyday lives actually work.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily McDowell
Date Added:
09/18/2014
Mercalli Scale Illustrated
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will learn about the Mercalli Scale for rating earthquakes. Also, students will make a booklet with drawings that represent each rating of the scale.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Mercury and Venus
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore Mercury and Venus, the first and second planets nearest the Sun. They learn about the planets' characteristics, including their differences from Earth. Students also learn how engineers are involved in the study of planets by designing equipment and spacecraft to go where it is too dangerous for humans.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jessica Butterfield
Jessica Todd
Malinda Schaefer Zarske
Sam Semakula
Date Added:
09/18/2014