The real world is seldom about whole numbers. If you precisely measure …
The real world is seldom about whole numbers. If you precisely measure anything, you're likely to get a decimal. If you don't know how to multiply these decimals, then you won't be able to do all the powerful things that multiplication can do in the real world (figure out your commission as a robot possum salesperson, determining how much shag carpet you need for your secret lair, etc.). Common Core Standards: 5.NBT.B.5, 5.NBT.B.7
The real world is seldom about whole numbers. If you precisely measure …
The real world is seldom about whole numbers. If you precisely measure anything, you're likely to get a decimal. If you don't know how to multiply these decimals, then you won't be able to do all the powerful things that multiplication can do in the real world (figure out your commission as a robot possum salesperson, determining how much shag carpet you need for your secret lair, etc.). Common Core Standards: 5.NBT.B.5, 5.NBT.B.7
The real world is seldom about whole numbers. If you precisely measure …
The real world is seldom about whole numbers. If you precisely measure anything, you're likely to get a decimal. If you don't know how to multiply these decimals, then you won't be able to do all the powerful things that multiplication can do in the real world (figure out your commission as a robot possum salesperson, determining how much shag carpet you need for your secret lair, etc.). Common Core Standards: 5.NBT.B.5, 5.NBT.B.7
The real world is seldom about whole numbers. If you precisely measure …
The real world is seldom about whole numbers. If you precisely measure anything, you're likely to get a decimal. If you don't know how to multiply these decimals, then you won't be able to do all the powerful things that multiplication can do in the real world (figure out your commission as a robot possum salesperson, determining how much shag carpet you need for your secret lair, etc.). Common Core Standards: 5.NBT.B.5, 5.NBT.B.7
The real world is seldom about whole numbers. If you precisely measure …
The real world is seldom about whole numbers. If you precisely measure anything, you're likely to get a decimal. If you don't know how to multiply these decimals, then you won't be able to do all the powerful things that multiplication can do in the real world (figure out your commission as a robot possum salesperson, determining how much shag carpet you need for your secret lair, etc.). Common Core Standards: 5.NBT.B.5, 5.NBT.B.7
In this activity, students learn about their heart rate and different ways …
In this activity, students learn about their heart rate and different ways it can be measured. Students construct a simple measurement device using clay and a toothpick, and then use this device to measure their heart rate under different circumstances (i.e., sitting, standing and jumping). Students make predictions and record data on a worksheet.
Students explore the biosphere's environments and ecosystems, learning along the way about …
Students explore the biosphere's environments and ecosystems, learning along the way about the plants, animals, resources and natural cycles of our planet. Over the course of lessons 2-6, students use their growing understanding of various environments and the engineering design process to design and create their own model biodome ecosystems - exploring energy and nutrient flows, basic needs of plants and animals, and decomposers. Students learn about food chains and food webs. They are introduced to the roles of the water, carbon and nitrogen cycles. They test the effects of photosynthesis and transpiration. Students are introduced to animal classifications and interactions, including carnivore, herbivore, omnivore, predator and prey. They learn about biomimicry and how engineers often imitate nature in the design of new products. As everyday applications are interwoven into the lessons, students consider why a solid understanding of one's environment and the interdependence within ecosystems can inform the choices we make and the way we engineer our communities.
CSDE Model Curricula Quick Start GuideEquitable and Inclusive Curriculum The CSDE believes in providing …
CSDE Model Curricula Quick Start GuideEquitable and Inclusive Curriculum The CSDE believes in providing a set of conditions where learners are repositioned at the center of curricula planning and design. Curricula, from a culturally responsive perspective, require intentional planning for diversity, equity, and inclusion in the development of units and implementation of lessons. It is critical to develop a learning environment that is relevant to and reflective of students’ social, cultural, and linguistic experiences to effectively connect their culturally and community-based knowledge to the class. Begin by connecting what is known about students’ cognitive and interdisciplinary diversity to the learning of the unit. Opposed to starting instructional planning with gaps in students’ knowledge, plan from an asset-based perspective by starting from students’ strengths. In doing so, curricula’s implementation will be grounded in instruction that engages, motivates, and supports the intellectual capacity of all students.Course Description: In Grade 5, instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; and (3) developing understanding of volume. Upon completion of this course students will have the ability to: Write and interpret numerical expressions; Analyze patterns and relationships; Understand the place value system; Perform operations with multi-digit whole numbers and with decimals to hundredths; Use equivalent fractions as a strategy to add and subtract fractions; Apply and extend previous understandings of multiplication and division to multiply and divide fractions; Convert like measurement units within a given measurement system; Represent and interpret data; Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition; Graph points on the coordinate plane to solve real-world and mathematical problems; and Classify two-dimensional figures into categories based on their properties. Aligned Core Resources: Core resources is a local control decision. Ensuring alignment of resources to the standards is critical for success. There are tools that are available to assist in evaluating alignment, such as CCSSO’s Mathematics Curriculum Analysis Project and Student Achievement Partner’s Instructional Materials Evaluation Tool. In addition EdReports and Louisiana Believes are two sources of completed reviews for a variety of resources. Connecticut is currently working on providing additional alignment guidance for the most frequently used resources across the state. Aligned Core Programs: The CSDE in partnership with SERC has engaged with providers of high-quality vetted resources to provide additional alignment guidance to the CSDE model curriculum. High-quality instructional resources are critical for improving student outcomes. The alignment guidance is intended to clarify content and support understanding for clear implementation and coherence. Materials selection is a local control decision and these documents have been provided from participating publishers to assist districts in implementation. Use of the materials from these publishers is not required. These aligned core programs meet expectations as reported by EdReports. If your resource is not listed below, you are encouraged to review EdReports to ensure the alignment of your resource to the Connecticut Core Standards. Strong alignment of curricula and instructional materials have the potential to support student engagement of meaningful grade level content daily and teacher growth. Achievement First Math Grade 5enVisions Grade 5Eureka Grade 5Fishtank Plus Math Grade 5HMH into Math Grade 5Imagine Learning Illustrative Mathematics Grade 5i-Ready Math Grade 5MidSchoolMath Grade 5Reveal Math Grade 5Financial Literacy Connections:The State of Connecticut is committed to implementing high-quality Financial Literacy instruction at all grade levels beginning in kindergarten. Financial Literacy supports students’ academic performance in several subject areas. The K-5 Model Math Curricula embeds tasks that align the mathematical content and skill to the essential Financial Literacy concepts such as income, spending, saving, investing, credit and risk. The concepts contained in the learning tasks are designed to be rich, hands-on activities with developmentally appropriate real-world connections. The tasks are identified by grade level and embedded in the appropriate units so that students can demonstrate mastery of what they need to know and be able to do by the end of their K-5 school experience. In this way, elementary students will be prepared to build upon Financial Literacy knowledge as they advance through middle and high school.Additional Course Information: Major work of Grade 5 mathematics focuses on multiplication and division of whole numbers and fractions including concepts, skills, and problem solving. Fluencies expected for Grade 5 include: Multi-digit multiplication Habits of Mind/SEIH/Transferable Skills Addressed in the Course: The Standards for Mathematical Practice describe the thinking processes, habits of mind, and dispositions that students need to develop a deep, flexible, and enduring understanding of mathematics. They describe student behaviors, ensure an understanding of math, and focus on developing reasoning and building mathematical communication. Therefore, the following should be addressed throughout the course: Make sense of problems & persevere in solving them Reason abstractly & quantitatively Construct viable arguments & critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for & make use of structure Look for & express regularity in repeated reasoning
Imagining themselves arriving at the Olympic gold medal soccer game in Beijing, …
Imagining themselves arriving at the Olympic gold medal soccer game in Beijing, students begin to think about how engineering is involved in sports. After a discussion of kinetic and potential energy, an associated hands-on activity gives students an opportunity to explore energy absorbing materials as they try to protect an egg from being crushed.
This hands-on activity explores five different forms of erosion (chemical, water, wind, …
This hands-on activity explores five different forms of erosion (chemical, water, wind, glacier and temperature). Students rotate through stations and model each type of erosion on rocks, soils and minerals. The students record their observations and discuss the effects of erosion on the Earth's landscape. Students learn about how engineers are involved in the protection of landscapes and structures from erosion. Math problems are included to help students think about the effects of erosion in real-world scenarios.
In Module 2, students apply the patterns of the base ten system …
In Module 2, students apply the patterns of the base ten system to mental strategies and the multiplication and division algorithms.
**NOTE: The New York State Education Department shut down the EngageNY website in 2022. In order to maintain educators' access, nearly all resources have been uploaded to archive.org and the resource links above have been updated to reflect their new locations.**
In Module 2 students apply patterns of the base ten system to …
In Module 2 students apply patterns of the base ten system to mental strategies and a sequential study of multiplication via area diagrams and the distributive property leading to fluency with the standard algorithm. Students move from whole numbers to multiplication with decimals, again using place value as a guide to reason and make estimations about products. Multiplication is explored as a method for expressing equivalent measures in both whole number and decimal forms. A similar sequence for division begins concretely with number disks as an introduction to division with multi-digit divisors and leads student to divide multi-digit whole number and decimal dividends by two-digit divisors using a vertical written method. In addition, students evaluate and write expressions, recording their calculations using the associative property and parentheses. Students apply the work of the module to solve multi-step word problems using multi-digit multiplication and division with unknowns representing either the group size or number of groups. An emphasis on the reasonableness of both products and quotients, interpretation of remainders and reasoning about the placement of decimals draws on skills learned throughout the module, including refining knowledge of place value, rounding, and estimation.
Students will brainstorm ways that they use and waste natural resources. Also, …
Students will brainstorm ways that they use and waste natural resources. Also, they will respond to some facts about population growth and how people use petroleum. Lastly, students will consider the different ways that engineers interact with and use our natural resources.
Students are introduced to the International Space Station (ISS) with information about …
Students are introduced to the International Space Station (ISS) with information about its structure, operation and key experiments. The ISS itself is an experiment in international cooperation to explore the potential for humans to live in space. The space station features state-of-the-art science and engineering laboratories to conduct research in medicine, materials and fundamental science to benefit people on Earth as well as people who will live in space in the future.
Using new knowledge acquired in the associated lesson, students program LEGO MINDSTORMS(TM) …
Using new knowledge acquired in the associated lesson, students program LEGO MINDSTORMS(TM) NXT robots to go through a maze using movement blocks. The maze is created on the classroom floor with cardboard boxes as its walls. Student pairs follow the steps of the engineering design process to brainstorm, design and test programs to success. Through this activity, students understand how to create and test a basic program. A PowerPoint® presentation, pre/post quizzes and worksheet are provided.
In this lesson, students will explore motion, rockets and rocket motion while …
In this lesson, students will explore motion, rockets and rocket motion while assisting Spacewoman Tess, Spaceman Rohan and Maya in their explorations. They will first learn some basic facts about vehicles, rockets and why we use them. Then, the students will discover that the motion of all objects including the flight of a rocket and movement of a canoe is governed by Newton's three laws of motion.
Students learn that charge movement through a circuit depends on the resistance …
Students learn that charge movement through a circuit depends on the resistance and arrangement of the circuit components. In a hands-on activity, students build and investigate the characteristics of series circuits. In another activity, students design and build a flashlight.
In this lesson, students explore solid waste and its effects on the …
In this lesson, students explore solid waste and its effects on the environment. They will collect classroom trash for analysis and build model landfills in order to understand the process and impact of solid waste management. Students will understand the role of engineers in solid waste management.
Students observe a model waterwheel to investigate the transformations of energy involved …
Students observe a model waterwheel to investigate the transformations of energy involved in turning the blades of a hydro-turbine. Students work as engineers to create model waterwheels while considering resources such as time and materials, in their design. Students also discuss and explore the characteristics of hydropower plants.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.