This lesson discusses the result of a charge being subject to both …
This lesson discusses the result of a charge being subject to both electric and magnetic fields at the same time. It covers the Hall effect, velocity selector, and the charge to mass ratio. Given several sample problems, students learn to calculate the Hall Voltage dependent upon the width of the plate, the drift velocity, and the strength of the magnetic field. Then students learn to calculate the velocity selector, represented by the ratio of the magnitude of the fields assuming the strength of each field is known. Finally, students proceed through a series of calculations to arrive at the charge to mass ratio. A homework set is included as an evaluation of student progress.
This course has been designed as a seminar to give students an …
This course has been designed as a seminar to give students an understanding of how scientists with medical or scientific degrees conduct research in both hospital and academic settings. There will be interactive discussions with research clinicians and scientists about the career opportunities and research challenges in the biomedical field, which an MIT student might prepare for by obtaining an MD, PhD, or combined degrees. The seminar will be held in a case presentation format, with topics chosen from the radiological sciences, including current research in magnetic resonance imaging, positron emission tomography and other nuclear imaging techniques, and advances in radiation therapy. With the lectures as background, we will also examine alternative and related options such as biomedical engineering, medical physics, and medical engineering. We'll use as examples and points of comparisons the curriculum paths available through MIT's Department of Nuclear Science and Engineering. In past years we have given very modest assignments such as readings in advance of or after a seminar, and a short term project.
Students use a simple set up consisting of a current carrying wire …
Students use a simple set up consisting of a current carrying wire and a magnet to explore the forces which enable biomedical imaging. In doing so, students run a current through a wire and then hold magnets in various positions to establish and explore the magnetic force acting on the wire. They move the magnets and change the current in the wire to explore how the force changes.
This team-taught multidisciplinary course provides information relevant to the conduct and interpretation …
This team-taught multidisciplinary course provides information relevant to the conduct and interpretation of human brain mapping studies. It begins with in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include: fMRI experimental design including block design, event related and exploratory data analysis methods, and building and applying statistical models for fMRI data; and human subject issues including informed consent, institutional review board requirements and safety in the high field environment. Additional Faculty Div Bolar Dr. Bradford Dickerson Dr. John Gabrieli Dr. Doug Greve Dr. Karl Helmer Dr. Dara Manoach Dr. Jason Mitchell Dr. Christopher Moore Dr. Vitaly Napadow Dr. Jon Polimeni Dr. Sonia Pujol Dr. Bruce Rosen Dr. Mert Sabuncu Dr. David Salat Dr. Robert Savoy Dr. David Somers Dr. A. Gregory Sorensen Dr. Christina Triantafyllou Dr. Wim Vanduffel Dr. Mark Vangel Dr. Lawrence Wald Dr. Susan Whitfield-Gabrieli Dr. Anastasia Yendiki
This lesson introduces the MRI Safety Grand Challenge question. Students are asked …
This lesson introduces the MRI Safety Grand Challenge question. Students are asked to write journal responses to the question and brainstorm what information they will need to answer the question. The ideas are shared with the class and recorded. Students then watch a video interview with a real life researcher to gain a professional perspective on MRI safety and brainstorm any additional ideas. The associated activity provides students the opportunity to visualize magnetic fields.
Students are given an engineering challenge: A nearby hospital has just installed …
Students are given an engineering challenge: A nearby hospital has just installed a new magnetic resonance imaging facility that has the capacity to make 3D images of the brain and other body parts by exposing patients to a strong magnetic field. The hospital wishes for its entire staff to have a clear understanding of the risks involved in working near a strong magnetic field and a basic understanding of why those risks occur. Your task is to develop a presentation or pamphlet explaining the risks, the physics behind those risks, and the safety precautions to be taken by all staff members. This 10-lesson/4-activity unit was designed to provide hands-on activities to teach end-of-year electricity and magnetism topics to a first-year accelerated or AP physics class. Students learn about and then apply the following science concepts to solve the challenge: magnetic force, magnetic moments and torque, the Biot-Savart law, Ampere's law and Faraday's law. This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn.
This lesson ties the preceding lessons together and brings students back to …
This lesson ties the preceding lessons together and brings students back to the grand challenge question on MRI safety. During this lesson, students focus on the logistics of magnetic resonance imaging as well as the MRI hardware. Students can then integrate this knowledge with their acquired knowledge on magnetic fields to solve the challenge question.
This lesson begins with a demonstration of the deflection of an electron …
This lesson begins with a demonstration of the deflection of an electron beam. Students then review their knowledge of the cross product and the right hand rule with sample problems. After which, students study the magnetic force on a charged particle as compared to the electric force. The following lecture material covers the motion of a charged particle in a magnetic field with respect to the direction of the field. Finally, students apply these concepts to understand the magnetic force on a current carrying wire. Its associated activity allows students to further explore the force on a current carrying wire.
This course explores the social relevance of neuroscience, considering how emerging areas …
This course explores the social relevance of neuroscience, considering how emerging areas of brain research at once reflect and reshape social attitudes and agendas. Topics include brain imaging and popular media; neuroscience of empathy, trust, and moral reasoning; new fields of neuroeconomics and neuromarketing; ethical implications of neurotechnologies such as cognitive enhancement pharmaceuticals; neuroscience in the courtroom; and neuroscientific recasting of social problems such as addiction and violence. Guest lectures by neuroscientists, class discussion, and weekly readings in neuroscience, popular media, and science studies.
Principles of tomographic imaging using ionizing and non-ionizing radiation, and ultrasound. Emphasis …
Principles of tomographic imaging using ionizing and non-ionizing radiation, and ultrasound. Emphasis is placed on fundamental physics and mathematics involved in image formation, including basic interactions, data acquisition and reconstruction. Planar radiographic imaging, multi-dimensional tomography (X-ray CAT, PET, SPECT), ultrasound, and NMR imaging covered. 22.56J aims to give graduate students and advanced undergraduates background in the theory and application of noninvasive imaging methods to biology and medicine, with emphasis on neuroimaging. The course focuses on the modalities most frequently used in scientific research (X-ray CT, PET/SPECT, MRI, and optical imaging), and includes discussion of molecular imaging approaches used in conjunction with these scanning methods. Lectures by the professor will be supplemented by in-class discussions of problems in research, and hands-on demonstrations of imaging systems.
Psychology is designed to meet scope and sequence requirements for the single-semester …
Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan
By the end of this section, you will be able to:Explain the …
By the end of this section, you will be able to:Explain the functions of the spinal cordIdentify the hemispheres and lobes of the brainDescribe the types of techniques available to clinicians and researchers to image or scan the brain
Is it a tumor? Magnetic Resonance Imaging (MRI) can tell. Your head …
Is it a tumor? Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.
In this lesson, students begin to focus on the torque associated with …
In this lesson, students begin to focus on the torque associated with a current carrying loop in a magnetic field. Students are prompted with example problems and use diagrams to visualize the vector product. In addition, students learn to calculate the energy of this loop in the magnetic field. Several example problems are included and completed as a class. A homework assignment is also attached as a means of student assessment.
In this activity, students take the age old concept of etch-a-sketch a …
In this activity, students take the age old concept of etch-a-sketch a step further. Using iron filings, students begin visualizing magnetic field lines. To do so, students use a compass to read the direction of the magnet's magnetic field. Then, students observe the behavior of iron filings near that magnet as they rotate the filings about the magnet. Finally, students study the behavior of iron filings suspended in mineral oil which displays the magnetic field in three dimensions.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.