Updating search results...

Search Resources

20 Results

View
Selected filters:
  • control
Angular Velocity: Sweet Wheels
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze the relationship between wheel radius, linear velocity and angular velocity by using LEGO(TM) MINDSTORMS(TM) NXT robots. Given various robots with different wheel sizes and fixed motor speeds, they predict which has the fastest linear velocity. Then student teams collect and graph data to analyze the relationships between wheel size and linear velocity and find the angular velocity of the robot given its motor speed. Students explore other ways to increase linear velocity by changing motor speeds, and discuss and evaluate the optimal wheel size and desired linear velocities on vehicles.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Muldoon
Jigar Jadav
Kelly Brandon
Date Added:
10/14/2015
Better By Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use the scientific method to determine the effect of control surfaces on a paper glider. They construct paper airplanes (model gliders) and test their performance to determine the base characteristics of the planes. Then they change one of the control surfaces and compare the results to their base glider in order to determine the cause and effect relationship of the control surfaces.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Date Added:
07/18/2021
Biology, The Chemistry of Life, The Study of Life, The Science of Biology
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Identify the shared characteristics of the natural sciencesSummarize the steps of the scientific methodCompare inductive reasoning with deductive reasoningDescribe the goals of basic science and applied science

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
OpenStax College
Date Added:
07/18/2021
Cars: Engineering for Efficiency
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how the aerodynamics and rolling resistance of a car affect its energy efficiency through designing and constructing model cars out of simple materials. As the little cars are raced down a tilted track (powered by gravity) and propelled off a ramp, students come to understand the need to maximize the energy efficiency of their cars. The most energy-efficient cars roll down the track the fastest and the most aerodynamic cars jump the farthest. Students also work with variables and plot how a car's speed changes with the track angle.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eszter Horanyi
Jake Crosby
Janet Yowell
William Surles
Date Added:
09/18/2014
Final ROV C2SL Document 6_14_17
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

We plan to facilitate several engineering lessons that requires students to design, build ROV controllers, calculate weight, underwater thrust and buoyancy.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Author:
Ben Wells
Kara Allen
Kim Stokes
Date Added:
07/07/2021
Gone with the Wind - Sail Cars!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the use of wind power in the design, construction and testing of "sail cars," which, in this case, are little wheeled carts with masts and sails that are powered by the moving air generated from a box fan. The scientific method is reviewed and reinforced with the use of controls and variables, and the engineering design process is explored. The focus of the activity is on renewable energy, as well as the design, testing and redesign of small cars made from household materials. The activity (and an extension worksheet) includes the use of kinematic equations using distance, time traveled and speed to enforce exponents and decimals.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Emily Gill
Kristi Ekern
Wyatt Champion
Date Added:
10/14/2015
How Many Drops?
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson and its associated activity, students conduct a simple test to determine how many drops of each of three liquids can be placed on a penny before spilling over. The three liquids are water, rubbing alcohol, and vegetable oil; because of their different surface tensions, more water can be piled on top of a penny than either of the other two liquids. However, this is not the main point of the activity. Instead, students are asked to come up with an explanation for their observations about the different amounts of liquids a penny can hold. In other words, they are asked to make hypotheses that explain their observations, and because middle school students are not likely to have prior knowledge of the property of surface tension, their hypotheses are not likely to include this idea. Then they are asked to come up with ways to test their hypotheses, although they do not need to actually test their hypotheses. The important points for students to realize are that 1) the tests they devise must fit their hypotheses, and 2) the hypotheses they come up with must be testable in order to be useful.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Introduction to Syntax, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to theories of syntax underlying work currently being done within the lexical-functional and government-binding frameworks. Organized into three interrelated parts, each focused upon a particular area of concern: phrase structure; the lexicon; and principles and parameters. Grammatical rules and processes constitute a focus of attention throughout the course that serve to reveal both modular structure of grammar and interaction of grammatical components. This course is concerned with the concepts and principles which have been of central significance in the recent development of syntactic theory, with special focus on the "Government and Binding" (GB) / "Principles and Parameters" (P&P) / "Minimalist Program" (MP) approach. It is the first of a series of two courses (24.951 is taught during the Fall and 24.952 is taught in the Spring). This course deals mostly with phrase structure, argument structure and its syntactic expression, including "A-movement". Though other issues (e.g. wh-movement, antecedent-contained deletion, extraposition) may be mentioned during the semester, the course will not systematically investigate these topics in class until 24.952. The goal of the course is to understand why certain problems have been treated in certain ways. Thus, on many occasions a variety of approaches will be discussed, and the (recent) historical development of these approaches are emphasized.

Subject:
Arts and Humanities
Linguistics
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
DeGraff, Michel
Date Added:
01/01/2003
Learn to Build a Rocket in 5 Days or Your Money Back
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students discover the entire process that goes into designing a rocket for any customer. In prior lessons, students learned how rockets work, but now they learn what real-world decisions engineers have to make when designing and building a rocket. They learn about important factors such as supplies, ethics, deadlines and budgets. Also, students learn about the Engineering process, and recognize that the first design is almost never the final design. Re-Engineering is a critical step in creating a rocket.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Modeling Dynamics and Control I, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First of two-term sequence on modeling, analysis and control of dynamic systems. Mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices. Analytical and computational solution of linear differential equations and state-determined systems. Laplace transforms, transfer functions. Frequency response, Bode plots. Vibrations, modal analysis. Open- and closed-loop control, instability. Time-domain controller design, introduction to frequency-domain control design techniques. Case studies of engineering applications.

Subject:
Functions
Mathematics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Dubowsky, Steven
Trumper, David L.
Date Added:
01/01/2005
Operations Management, Spring 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Our objective in this course is to introduce you to concepts and techniques related to the design, planning, control, and improvement of manufacturing and service operations. The course begins with a holistic view of operations, where we stress the coordination of product development, process management, and supply chain management. As the course progresses, we will investigate various aspects of each of these three tiers of operations in detail. We will cover topics in the areas of process analysis, materials management, production scheduling, quality improvement, and product design. To pursue the course objective most effectively, you will have to: 1. Study the assigned reading materials. 2. Prepare and discuss cases, readings, and exercises in class. 3. Prepare written analyses of cases.

Subject:
Business and Communication
Career and Technical Education
Manufacturing
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fine, Charles H.
Date Added:
01/01/2002
Power: Interpersonal, Organizational and Global Dimensions, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Using examples from anthropology and sociology alongside classical and contemporary social theory, this course explores the nature of dominant and subordinate relationships, types of legitimate authority, and practices of resistance. The course also examines how we are influenced in subtle ways by the people around us, who makes controlling decisions in the family, how people get ahead at work, and whether democracies, in fact, reflect the "will of the people..

Subject:
Anthropology
Political Science
Social Science
Sociology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Silbey, Susan
Date Added:
01/01/2005
Rocket Me into Space
Read the Fine Print
Educational Use
Rating
0.0 stars

One of the exciting challenges for engineers is the idea of exploration. This lesson looks more closely at Spaceman Rohan, Spacewoman Tess, their daughter Maya, and their challenges with getting to space, setting up satellites, and exploring uncharted waters via a canoe. This lesson reinforces rockets as a vehicle that helps us explore outside the Earth's atmosphere (i.e., to move without air) by using the principles of Newton's third law of motion. Also, the ideas of thrust, control and weight all principles that engineers deal with when building a rocket are introduced.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
09/18/2014
Soil Biosolarization: Using Food Waste and the Sun to Get Rid of Weeds in Soil
Read the Fine Print
Educational Use
Rating
0.0 stars

Over the course of three sessions, students act as agricultural engineers and learn about the sustainable pest control technique known as soil biosolarization in which organic waste is used to help eliminate pests during soil solarization instead of using toxic compounds like pesticides and fumigants. Student teams prepare seed starter pots using a source of microorganisms (soil or compost) and “organic waste” (such as oatmeal, a source of carbon for the microorganisms). They plant seeds (representing weed seeds) in the pots, add water and cover them with plastic wrap. At experiment end, students count the weed seedlings and assess the efficacy of the soil biosolarization technique in inactivating the weed seeds. An experiment-guiding handout and pre/post quizzes are provided.

Subject:
Biology
Career and Technical Education
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Jesús D. Fernández Bayo
Date Added:
07/07/2021
Stochastic Processes, Detection, and Estimation, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of detection and estimation for signal processing, communications, and control. Vector spaces of random variables. Bayesian and Neyman-Pearson hypothesis testing. Bayesian and nonrandom parameter estimation. Minimum-variance unbiased estimators and the Cramer-Rao bounds. Representations for stochastic processes; shaping and whitening filters; Karhunen-Loeve expansions. Detection and estimation from waveform observations. Advanced topics: linear prediction and spectral estimation; Wiener and Kalman filters.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Willsky, Alan S.
Date Added:
01/01/2004
Strawkets and Control
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the effect that fins have on rocket flight. Students construct two paper rockets that they can launch themselves by blowing through a straw. One "strawket" has wings and the other has fins. Students observe how these two control surfaces affect the flight of their strawkets. Students discover how difficult control of rocket flight is and what factors can affect it.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Wet Pennies
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct a simple test to determine how many drops of each of three liquids water, rubbing alcohol, vegetable oil can be placed on a penny before spilling over. Because of their different surface tensions, more water can be piled on top of a penny than either of the other two liquids. However, the main point of the activity is for students to come up with an explanation for their observations about the different amounts of liquids a penny can hold. To do this, they create hypotheses that explain their observations, and because middle school students are not likely to have prior knowledge of the property of surface tension, their hypotheses are not likely to include this idea. Then they are asked to come up with ways to test their hypotheses, although they do not need to actually conduct these tests as part of this activity.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015