Updating search results...

Search Resources

1859 Results

View
Selected filters:
  • Engineering
Life Cycles
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will extend their knowledge of matter and energy cycles in an organism to engineering life cycle assessment of a product. Students will learn about product life cycle assessment and the flow of energy through the cycle, comparing it to the flow of nutrients and energy in the life cycle of an organism.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
09/18/2014
Life Science
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit covers the processes of photosynthesis, extinction, biomimicry and bioremediation. In the first lesson on photosynthesis, students learn how engineers use the natural process of photosynthesis as an exemplary model of a complex yet efficient process for converting solar energy to chemical energy or distributing water throughout a system. In the next lesson on species extinction, students learn that it is happening at an alarming rate. Students discover that the destruction of habitat is the main reason many species are threatened and how engineers are trying to stop this habitat destruction. The third lesson introduces students to the idea of biomimicry or looking to nature for engineering ideas. And, in the fourth and final lesson, students learn about a specialty branch of engineering called bioremediation the use of living organisms to aid in the clean up of pollutant spills.

Subject:
Applied Science
Botany
Engineering
Life Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Life in Space: The International Space Station
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the International Space Station (ISS) with information about its structure, operation and key experiments. The ISS itself is an experiment in international cooperation to explore the potential for humans to live in space. The space station features state-of-the-art science and engineering laboratories to conduct research in medicine, materials and fundamental science to benefit people on Earth as well as people who will live in space in the future.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoffrey Hill
Jane Evenson
Jessica Butterfield
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
Life on the Moon
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn about the physical properties of the Moon. They compare these to the properties of the Earth to determine how life would be different for astronauts living on the Moon. Using their understanding of these differences, they are asked to think about what types of products engineers would need to design for us to live comfortably on the Moon.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Jane Evenson
Janet Yowell
Jessica Butterfield
Jessica Todd
Karen King
Sam Semakula
Date Added:
09/18/2014
Lifter (EHD Thrusters)
Read the Fine Print
Educational Use
Rating
0.0 stars

Students teams each assemble a wing component of a lifter with the goal to test the lifter wing and measure the force exerted when high voltage is applied to it. After an introduction to torque and its use to measure force, students calculate the change in the torque when a high voltage is applied to the wing portion of the lifter using a fulcrum. Once a group has assembled its wing portion, the teacher tests it with a high-voltage power supply, marking the change in the balance so that students can calculate the force. Then groups adjust the gap between the electrodes and re-measure the force. Groups each repeat this process three times, which allows students to estimate the magnitude of the force as a function of the gap between the electrodes.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Light Intensity Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students complete this Beer's Law activity in class. Students examine the attenuation of various thicknesses of transparencies. From this activity, students will understand that different substances absorb light differently. This can then be transferred to X-rays to explain that different substances absorb X-rays differently, hence the need for dual-energy analysis. In looking at Beer's Law, students use the properties associated with natural logarithms. After the activity, students complete a series of questions regarding what they observed.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Garay
Date Added:
09/18/2014
Light It Up
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an introduction to the design of lighting systems and the electromagnetic spectrum, students learn about the concept of daylighting as well as two types of light bulbs (lamps) often used in energy-efficient lighting design.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Light Plants and Dark Plants, Wet Plants and Dry Ones
Read the Fine Print
Educational Use
Rating
0.0 stars

Students plant sunflower seeds in plastic cups, and once germinated, expose them to varying light or soil moisture conditions. They measure growth of the seedlings every few days using non-standard measurement (inch cubes). After a few weeks, they compare the growth of plants exposed to the different conditions and make bar comparative graphs, which they analyze to draw conclusions about the needs of plants.

Subject:
Applied Science
Botany
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Light Properties
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the basic properties of light and how light interacts with objects. They are introduced to the additive and subtractive color systems, and the phenomena of refraction. Students further explore the differences between the additive and subtractive color systems via predictions, observations and analysis during three demonstrations. These topics help students gain a better understanding of how light is connected to color, bringing them closer to answering an overarching engineering challenge question.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Ellen Zielinski
Marissa H. Forbes
Date Added:
09/18/2014
Light-Up Plush Pals
Read the Fine Print
Educational Use
Rating
0.0 stars

Students make their own design decisions about controlling the LEDs in a light-up, e-textile circuit, plush toy project that they make using LilyPad ProtoSnap components and conductive thread. They follow step-by-step instructions to assemble a product while applying their own creativity to customize it. They first learn about the switches—an on/off switch and a button—exploring these two ways of controlling the flow of electric current to LEDs and showing them the difference between closed and open circuits. Then they craft their creative light-up plush pals made from sewn and stuffed felt pieces (template provided) that include sewn electric circuits. Through this sewable electronics project, students gain a familiarity with microcontrollers, circuits, switches and LEDs—everyday items in today’s world and the components used in so many engineered devices.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Angela Sheehan
Morgan Ulrich
Date Added:
05/11/2017
Light Up Your Life
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the correct technical vocabulary for lighting, which is different than layperson's terms. They learn about lamp (light bulb) technology and how to identify the various types of lighting in their spaces. They are also introduced to lighting controls as a means for saving energy- reducing costs, human energy consumption, and greenhouse gas emissions on the environment. Using an accompanying worksheet, students embark on a guided audit in which they survey the lighting in their classroom and identify the potential savings from using controls.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Darcie Chinnis
Janet Yowell
Date Added:
09/18/2014
Light Your Way
Read the Fine Print
Educational Use
Rating
0.0 stars

During a power failure, or when we go outside at night, we grab a flashlight so we can find our way. What happens inside a flashlight that makes the bulb light up? Why do we need a switch to turn on a flashlight? Have you ever noticed that for the flashlight to work you must orient the batteries a certain way as you insert them into the casing? Many people do not know that a flashlight is a simple series circuit. In this hands-on activity, students build this everyday household item and design their own operating series circuit flashlights.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise W. Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
10/14/2015
Lights On!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to circuits through a teacher demonstration using a set of Christmas lights. Then students groups build simple circuits using batteries, wires and light bulbs. They examine how electricity is conducted through a light bulb using a battery as a power source. Students also observe the differences between series and parallel circuits by building each type.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Wendy Lin
Date Added:
10/14/2015
Lights Out!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces the concept of electricity by asking students to imagine what their life would be like without electricity. Two main forms of electricity, static and current, are introduced. Students learn that electrons can move between atoms, leaving atoms in a charged state.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Light vs. Heat Bulbs
Read the Fine Print
Educational Use
Rating
0.0 stars

Students measure the light output and temperature (as a measure of heat output) for three types of light bulbs to identify why some light bulbs are more efficient (more light with less energy) than others.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
LilyTiny Plush Monsters Are Alive!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to set up pre-programmed microcontroller units like the Arduino LilyPad and use them to enhance a product’s functionality and personality. They do this by making plush toys in monster shapes (template provided) with microcontrollers and LEDs sewn into the felt fabric with conductive thread to make circuits. At activity end, each student will have created his or her own plush toy, complete with LEDs that illuminate in a specified sequence: random twinkle, blink, heartbeat and/or breathing.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Aaron Lamplugh
Angela Sheehan
Date Added:
03/03/2017
Lineaire Schakelingen
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Dit vak gaat over het berekenen van spanningen, stromen en vermogens in elektrische circuits met bronnen, weerstanden, spoelen en condensatoren. In het eerste deel worden de componenten geïntroduceerd en de basisberekeningsmethoden aangeleerd. In het tweede deel worden de technieken uit het eerste deel toegepast op tweede-orde circuits, circuits met sinusvormige spanningen en stromen, magnetisch gekoppelde circuits en vermogenscircuits. Verder is er veel aandacht voor filters, frequentieresponsies, tweepoorten en de Laplace transformatie

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. W.A. Serdijn
Date Added:
07/14/2021
Linear Equations Game
Read the Fine Print
Educational Use
Rating
0.0 stars

Students groups act as aerospace engineering teams competing to create linear equations to guide space shuttles safely through obstacles generated by a modeling game in level-based rounds. Each round provides a different configuration of the obstacle, which consists of two "gates." The obstacles are presented as asteroids or comets, and the linear equations as inputs into autopilot on board the shuttle. The winning group is the one that first generates the successful equations for all levels. The game is created via the programming software MATLAB, available as a free 30-day trial. The activity helps students make the connection between graphs and the real world. In this activity, they can see the path of a space shuttle modeled by a linear equation, as if they were looking from above.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Stanislav Roslyakov
Date Added:
09/18/2014
Linear Modeling
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course linear modeling delivers the skillset in linear or structural modeling that is required to solve structural problems from which you can develop finite element (FE) models for practical applications. It also teaches how results can be correctly interpreted. The course uses an open source FE package in a series of weekly practical sessions where models are constructed for sample problems and results are validated against simplified analytical models or open literature.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Ir. Sonell Shroff
Date Added:
07/14/2021
Linear Regression of BMD Scanners
Read the Fine Print
Educational Use
Rating
0.0 stars

Students complete an exercise showing logarithmic relationships and examine how to find the linear regression of data that does not seem linear upon initial examination. They relate number of BMD scanners to time.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Date Added:
09/18/2014