Updating search results...

Search Resources

163 Results

View
Selected filters:
  • water
Measuring Surface Tension
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe capillary action in glass tubes of varying sizes. Then they use the capillary action to calculate the surface tension in each tube. They find the average surface tensions and calculate the statistical errors.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Nanoparticles at Photocatalytic Speed!
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams learn how water filtration systems that use nanoparticles and nanotechnology can remove organic compounds from water. First they learn about the role nanoparticles play in water filtration. Then they are introduced to the basics of nanoparticles and nanotechnology, focusing on the impacts and benefits this innovative technology has on our daily lives. Using methylene blue and methyl orange solutions, students test for the efficiency of photocatalytic nanoparticles to sanitize water. They expose a solution sample of water and methyl orange (the microbe indicator) with their newly-made water sanitation filters under UV light (sunlight) to activate the photocatalytic properties of three specific nanoparticles. They visually compare them with control samples to determine the best photocatalytic nanoparticle to sanitize water.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Josie Zamora
Date Added:
08/20/2018
Natural Disasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to our planet's structure and its dynamic system of natural forces through an examination of the natural hazards of earthquakes, volcanoes, landslides, tsunamis, floods and tornados, as well as avalanches, fires, hurricanes and thunderstorms. They see how these natural events become disasters when they impact people, and how engineers help to make people safe from them. Students begin by learning about the structure of the Earth; they create clay models showing the Earth's layers, see a continental drift demo, calculate drift over time, and make fault models. They learn how earthquakes happen; they investigate the integrity of structural designs using model seismographs. Using toothpicks and mini-marshmallows, they create and test structures in a simulated earthquake on a tray of Jell-O. Students learn about the causes, composition and types of volcanoes, and watch and measure a class mock eruption demo, observing the phases that change a mountain's shape. Students learn that the different types of landslides are all are the result of gravity, friction and the materials involved. Using a small-scale model of a debris chute, they explore how landslides start in response to variables in material, slope and water content. Students learn about tsunamis, discovering what causes them and makes them so dangerous. Using a table-top-sized tsunami generator, they test how model structures of different material types fare in devastating waves. Students learn about the causes of floods, their benefits and potential for disaster. Using riverbed models made of clay in baking pans, students simulate the impact of different river volumes, floodplain terrain and levee designs in experimental trials. They learn about the basic characteristics, damage and occurrence of tornadoes, examining them closely by creating water vortices in soda bottles. They complete mock engineering analyses of tornado damage, analyze and graph US tornado damage data, and draw and present structure designs intended to withstand high winds.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
04/10/2009
Newton's Law of Cooling
Read the Fine Print
Educational Use
Rating
0.0 stars

Students come to see the exponential trend demonstrated through the changing temperatures measured while heating and cooling a beaker of water. This task is accomplished by first appealing to students' real-life heating and cooling experiences, and by showing an example exponential curve. After reviewing the basic principles of heat transfer, students make predictions about the heating and cooling curves of a beaker of tepid water in different environments. During a simple teacher demonstration/experiment, students gather temperature data while a beaker of tepid water cools in an ice water bath, and while it heats up in a hot water bath. They plot the data to create heating and cooling curves, which are recognized as having exponential trends, verifying Newton's result that the change in a sample's temperature is proportional to the difference between the sample's temperature and the temperature of the environment around it. Students apply and explore how their new knowledge may be applied to real-world engineering applications.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Karl Abdelnour
Nicole Abaid
Robert Eckhardt
Date Added:
09/18/2014
Next Generation Infrastructures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Infrastructures for energy, water, transport, information and communications services create the conditions for livability and economic development. They are the backbone of our society. Similar to our arteries and neural systems that sustain our human bodies, most people however take infrastructures for granted. That is, until they break down or service levels go down.

In many countries around the globe infrastructures are ageing. They require substantial investments to meet the challenges of increasing population, urbanization, resource scarcity, congestion, pollution, and so on. Infrastructures are vulnerable to extreme weather events, and therewith to climate change.
Technological innovations, such as new technologies to harvest renewable energy, are one part of the solution. The other part comes from infrastructure restructuring. Market design and regulation, for example, have a high impact on the functioning and performance of infrastructures.

Subject:
Applied Science
Engineering
Material Type:
Case Study
Diagram/Illustration
Lecture
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Delft University of Technology
Date Added:
07/14/2021
Ocean Water Desalination
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the techniques engineers have developed for changing ocean water into drinking water, including thermal and membrane desalination. They begin by reviewing the components of the natural water cycle. They see how filters, evaporation and/or condensation can be components of engineering desalination processes. They learn how processes can be viewed as systems, with unique objects, inputs, components and outputs, and sketch their own system diagrams to describe their own desalination plant designs.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Juan Ramirez Jr.
Stephanie Rivale
Date Added:
09/18/2014
Oil Spill
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson will allow students to explore an important role of environmental engineers: cleaning the environment. Students will learn details about the Exxon Valdez oil spill, which was one of the most publicized and studied environmental tragedies in history. In the accompanying activity, they will try many "engineered" strategies to clean up their own manufactured oil spill and learn the difficulties of dealing with oil released into our waters.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Oil Spill Cleanup
Read the Fine Print
Educational Use
Rating
0.0 stars

This hands-on experiment will provide students with an understanding of the issues that surround environmental cleanup. Students will create their own oil spill, try different methods for cleaning it up, and then discuss the merits of each method in terms of effectiveness (cleanliness) and cost. They will be asked to put themselves in the place of both an environmental engineer and an oil company owner who are responsible for the clean-up.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Sharon D. Perez-Suarez
Date Added:
10/14/2015
Oil on the Ocean
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about oil spills and their environmental and economic effects. They experience the steps of the engineering design process as they brainstorm potential methods for oil spill clean-up, and then design, build, and re-design oil booms to prevent the spread of oil spills. During a reflective session after cleaning up their oil booms, students come up with ideas on how to reduce oil consumption to prevent future oil spills.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Berkeley Almand
Carleigh Samson
Janet Yowell
Kristen Brown
Malinda Schaefer Zarske
Melissa Straten
Sharon D. Perez-Suarez
Date Added:
09/18/2014
One World Ocean
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students learn about ocean currents and the difference between salt and fresh water. They use colored ice cubes to see how cold and warm water mix and how this mixing causes currents. Also, students learn how surface currents occur due to wind streams. Lastly, they learn how fresh water floats on top of salt water, the difference between water in the ocean and fresh water throughout the planet, and how engineers are involved in the design of ocean water systems for human use.

Subject:
Applied Science
Engineering
Oceanography
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Sara Born
Date Added:
10/14/2015
The Other Water Cycle
Read the Fine Print
Educational Use
Rating
0.0 stars

For students that have already been introduced to the water cycle this lesson is intended as a logical follow-up. Students will learn about human impacts on the water cycle that create a pathway for pollutants beginning with urban development and joining the natural water cycle as surface runoff. The extent of surface runoff in an area depends on the permeability of the materials in the ground. Permeability is the degree to which water or other liquids are able to flow through a material. Different substances such as soil, gravel, sand, and asphalt have varying levels of permeability. In this lesson, along with the associated activities, students will learn about permeability and compare the permeability of several different materials for the purpose of engineering landscape drainage systems.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Sherry McGauvran
Usman Zaheer
Date Added:
09/18/2014
Particle Sensing: The Coulter Counter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a short lesson on the Coulter principle—an electronic method to detect microscopic particles and determine their concentration in fluid. Depending on the focus of study, students can investigate the industrial and medical applications of particle detection, the physics of fluid flow and electric current through the apparatus, or the chemistry of the electrolytes used in the apparatus.

Subject:
Applied Science
Engineering
Life Science
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Permeable Pavement
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate how different riparian ground covers, such as grass or pavement, affect river flooding. They learn about permeable and impermeable materials through the measurement how much water is absorbed by several different household materials in a model river. Students use what they learn to make recommendations for engineers developing permeable pavement. Also, they consider several different limitations for design in the context of a small community.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Tim Nicklas
Date Added:
10/14/2015
Plant Cycles: Photosynthesis & Transpiration
Read the Fine Print
Educational Use
Rating
0.0 stars

What do plants need? Students examine the effects of light and air on green plants, learning the processes of photosynthesis and transpiration. Student teams plant seeds, placing some in sunlight and others in darkness. They make predictions about the outcomes and record ongoing observations of the condition of the stems, leaves and roots. Then, several healthy plants are placed in glass jars with lids overnight. Condensation forms, illustrating the process of transpiration, or the release of moisture to the atmosphere by plants.

Subject:
Applied Science
Botany
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Power Your House with Water
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers design devices that use water to generate electricity by building model water turbines and measuring the resulting current produced in a motor. Student teams work through the engineering design process to build the turbines, analyze the performance of their turbines and make calculations to determine the most suitable locations to build dams.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
10/14/2015
Principles of Oceanographic Instrument Systems -- Sensors and Measurements (13.998), Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces theoretical and practical principles of design of oceanographic sensor systems. Topics include: transducer characteristics for acoustic, current, temperature, pressure, electric, magnetic, gravity, salinity, velocity, heat flow, and optical devices; limitations on these devices imposed by ocean environments; signal conditioning and recording; noise, sensitivity, and sampling limitations; and standards. Lectures by experts cover the principles of state-of-the-art systems being used in physical oceanography, geophysics, submersibles, acoustics. For lab work, day cruises in local waters allow students to prepare, deploy and analyze observations from standard oceanographic instruments.

Subject:
Oceanography
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Williams, Albert (Sandy), 3rd
Date Added:
01/01/2004
Protect Your Body, Filter Your Water!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experience the steps of the engineering design process as they design solutions for a real-world problem that could affect their health. After a quick review of the treatment processes that municipal water goes through before it comes from the tap, they learn about the still-present measurable contamination of drinking water due to anthropogenic (human-made) chemicals. Substances such as prescription medication, pesticides and hormones are detected in the drinking water supplies of American and European metropolitan cities. Using chlorine as a proxy for estrogen and other drugs found in water, student groups design and test prototype devices that remove the contamination as efficiently and effectively as possible. They use plastic tubing and assorted materials such as activated carbon, cotton balls, felt and cloth to create filters with the capability to regulate water flow to optimize the cleaning effect. They use water quality test strips to assess their success and redesign for improvement. They conclude by writing comprehensive summary design reports.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Terri Camesano
Timothy S. Vaillancourt
Date Added:
10/14/2015
Protecting Our City with Levees
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build their own model levees. Acting as engineers for their city, teams create sturdy barriers to prevent water from flooding a city in the event of a hurricane.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Brian Kay
Denise W. Carlson
Janet Yowell
Karen King
Katherine Beggs
Date Added:
10/14/2015
Public Hygiene and Epidemiology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A framework of public hygiene and epidemiology is given. Human pathology related to water and sanitation is dealt with, as well as the relation between health and society and environment.

Subject:
Applied Science
Environmental Science
Health, Medicine and Nursing
Material Type:
Activity/Lab
Assessment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
P. Bol
Date Added:
02/08/2016
Pump It!
Read the Fine Print
Educational Use
Rating
0.0 stars

Pumps are used to get drinking water to our houses every day! And in disaster situations, pumps are essential to keep flood water out. In this hands-on activity, student groups design, build, test and improve devices to pump water as if they were engineers helping a rural village meet their drinking water supply. Students keep track of their materials costs, and calculate power and cost efficiencies of the prototype pumps. They also learn about different types of pumps, how they work and useful applications.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Malinda Schaefer Zarske
Michael A. Soltys
Date Added:
09/18/2014