Updating search results...

Search Resources

1447 Results

View
Selected filters:
  • Physical Science
Human Power
Read the Fine Print
Educational Use
Rating
0.0 stars

Students do work by lifting a known mass over a period of time. The mass and measured distance and time is used to calculate force, work, energy and power in metric units. The students' power is then compared to horse power and the power required to light 60-watt light bulbs.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Human Water Cycle
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the human water cycle, or how humans impact the water cycle by settling down in civilizations. Specifically, they learn how people obtain, use and dispose of water. Students also learn about shortages of treated, clean and safe water and learn about ways that engineers address this issue through water conservation and graywater recycling.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Katie Spahr
Malinda Schaefer Zarske
Date Added:
09/18/2014
Hurricanes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn what causes hurricanes and what engineers do to help protect people from destruction caused by hurricane winds and rain. Research and data collection vessels allow for scientists and engineers to model and predict weather patterns and provide forecasts and storm warnings to the public. Engineers are also involved in the design and building of flood-prevention systems, such as levees and floodwalls. During the 2005 hurricane season, levees failed in the greater New Orleans area, contributing to the vast flooding and destruction of the historic city. In the associated activity, students learn how levees work, and they build their own levees and put them to the test!

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abby Watrous
Brian Kay
Denise W. Carlson
Janet Yowell
Karen King
Kate Beggs
Date Added:
09/18/2014
Hybrid Vehicle Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Through four lessons and four hands-on associated activities, this unit provides a way to teach the overarching concept of energy as it relates to both kinetic and potential energy. Within these topics, students are exposed to gravitational potential, spring potential, the Carnot engine, temperature scales and simple magnets. During the module, students apply these scientific concepts to solve the following engineering challenge: "The rising price of gasoline has many effects on the US economy and the environment. You have been contracted by an engineering firm to help design a physical energy storage system for a new hybrid vehicle for Nissan. How would you go about solving this problem? What information would you consider to be important to know? You will create a small prototype of your design idea and make a sales pitch to Nissan at the end of the unit." This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn. This module is written for a first-year algebra-based physics class, though it could easily be modified for conceptual physics.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
Hydrodynamics (13.012), Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the development of the fundamental equations of fluid mechanics and their simplifications for several areas of marine hydrodynamics and the application of these principles to the solution of engineering problems. Topics include the principles of conservation of mass, momentum and energy, lift and drag forces, laminar and turbulent flows, dimensional analysis, added mass, and linear surface waves, including wave velocities, propagation phenomena, and descriptions of real sea waves. Wave forces on structures are treated in the context of design and basic seakeeping analysis of ships and offshore platforms. Geophysical fluid dynamics will also be addressed including distributions of salinity, temperature, and density; heat balance in the ocean; major ocean circulations and geostrophic flows; and the influence of wind stress. Experimental projects conducted in ocean engineering laboratories illustrating concepts taught in class, including ship resistance and model testing, lift and drag forces on submerged bodies, and vehicle propulsion.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Techet, Alexandra
Date Added:
01/01/2005
Hydrogen-Oxygen Reaction Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

This lab exercise exposes students to a potentially new alternative energy source hydrogen gas. Student teams are given a hydrogen generator and an oxygen generator. They balance the chemical equation for the combustion of hydrogen gas in the presence of oxygen. Then they analyze what the equation really means. Two hypotheses are given, based on what one might predict upon analyzing the chemical equation. Once students have thought about the process, they are walked through the experiment and shown how to collect the gas in different ratios. By trial and error, students determine the ideal combustion ratio. For both volume of explosion and kick generated by explosion, they qualitatively record results on a 0-4 scale. Then, students evaluate their collected results to see if the hypotheses were correct and how their results match the theoretical equation. Students learn that while hydrogen will most commonly be used for fuel cells (no combustion situation), it has been used in rocket engines (for which a tremendous combustion occurs).

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Herring
Stephen Dent
Date Added:
09/18/2014
Hydrological Measurements
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Relation of purpose of data to data requirements. Relation of data to costs.
Accuracy requirements of measurements and error propagation:
Related to a problem the required accuracy of measurements and the consequences for accuracy in the final result are discussed. Different types of errors are handled. Propagation of errors; for dependent and independent measurements, from mathematical relations and regression is demonstrated. Recapitulated is the theory of regression and correlation.
Interpretation of measurements, data completion: By standard statistical methods screening of measured data is performed; double mass analysis, residual mass, simple rainfall-runoff modelling. Detection of trends; split record tests, Spearman rank tests. Methods to fill data gaps and do filtering on data series for noise reduction.
Methods of hydrological measurements and measuring equipment: To determine quantitatively the most important elements in the hydrological cycle an overview is presented of most common hydrological measurements, measuring equipment and indirect determination methods i.e. for precipitation, evaporation, transpiration, river discharge and groundwater tables. Use, purpose and measurement techniques for tracers in hydrology is discussed.
Advantages and disadvantages and specific condition/application of methods are discussed. Equipment is demonstrated and discussed.
Areal distributed observation: Areal interpolation techniques of point observations: inverse distance, Thiessen, contouring, Kriging. Comparison of interpolation techniques and estimation of errors. Correlation analysis of areal distributed observation of rainfall
Design of measuring networks: Based on correlation characteristics from point measurements (e.g. rainfall stations) and accuracy requirements the design of a network of stations is demonstrated.

Subject:
Hydrology
Physical Science
Material Type:
Homework/Assignment
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. A.M.J. Coenders
Date Added:
02/17/2016
Hydrologie
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

-De hydrologie van Nederland in historisch perspectief en de rol van de mens daarin (de vroege geschiedenis; waterbeheersing van af het begin van de 17e eeuw; grote werken);-Hydrologie van Nederland (geologie; neerslag en verdamping; oppervlaktewater; gro

Subject:
Hydrology
Physical Science
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
H.H.G. Savenije
Date Added:
07/14/2021
Hydrology of Catchments, Rivers, Deltas
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course deals with the principles of hydrology of catchment areas, rivers and deltas. The students will learn:

1). to understand the relations between hydrological processes in catchment areas
2?. to understand and to calculate the propagation of flood waves
3). to understand hydrological processes in deltas
4). to draft frequency analysis of extremes under different climatological conditions.

Subject:
Hydrology
Physical Science
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
H.H.G. Savenije
Date Added:
02/20/2016
Hydromechanica 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In dit college wordt een introductie gegeven van een groot aantal facetten van de scheepshydromechanica en hun onderlinge samenhang zoals die later in de studie meer als geisoleerde onderwerpen aan bod komen. Behandeld worden: de hydrostatica, de geometrie beschrijving van het schip, inleiding lijnenplan, het begrip stabiliteit, de stabiliteit van drijvende lichamen, eenvoudige stabiliteit berekening bij kleine helling hoeken, de weerstand van lichamen onder water en aan het oppervlak, eenvoudige weerstand benaderings methoden voor schepen, de model wetten in de hydromechanica, de extrapolatie methode van Froude, de lift van een vleugel, de vleugel karakteristieken, de toepassing hiervan bij voortstuwing en bij scheepsschroeven, de schroef karakteristieken en een eenvoudige schroef berekening, en tenslotte de fysica van het zeilen en zeilvoortstuwing. Leerdoelen De student kan: 1. de basis van systeem analyse beschrijven (buitenwereld, interfaces, beperkingen, objecten, relaties enz.) 2. maritieme systemen zoals schip/motor/schroef beschrijven en modelleren met behulp van beperkte systeem analyse methodologie; eenvoudige maritieme systemen modelleren door onderverdeling in subsystemen en componenten 3. evenwicht condities van maritieme systemen bepalen en kwalitatief analyseren 4. de definities en belangrijkste karakteristieken van weerstand, voortstuwing en manoeuvreren (snelheid, weerstand, vermogen, RPM, draaicapaciteit) begrijpen en toepassen 5. de relaties tussen algemeen vloeistof dynamica en scheepshydromechanica (bijv. lift/aerodynamica/zeilen; visceuze stroming/Reynolds getal/volgstroomvelden/voortstuwingsrendement; laminair & visceuze stroming/weerstand; niet visceuze stroming/golf patronen/weerstand) beschrijven 6. de achtergrond van de belangrijkste schaal regels (Newton, Froude, Reynolds) d.m.v dimensie analyse uitleggen 7. schaalregels voor schaalmodel experimenten in een sleeptank toepassen en potentiĚÇle complicaties identificeren

Subject:
Hydrology
Physical Science
Material Type:
Full Course
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
P. de Jong
Date Added:
02/24/2016
Hydromechanica 3
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fenomenologische beschrijving van de stroming om een schip classificatie van weerstandscomponenten en parametrische methoden voor de berekening van de scheepsweerstand. Daarnaast wordt uitgelegd hoe de scheepsweerstand experimenteel bepaald kan worden.

Voor scheepsschroeven wordt aangegeven hoe de complete geometrie beschreven kan worden, hoe de stuwkracht en koppel uit een parametrische beschrijving kan worden berekend m.b.v. een systematische schroevenserie en via een ideaal stromings model (actuator schijf). Een introductie in cavitatie (vorming van waterdamp gebieden) is onderdeel van de cursus.

Subject:
Hydrology
Physical Science
Material Type:
Assessment
Lecture
Lesson Plan
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr.ir. T.J.C. van Terwisga
Date Added:
07/14/2021
I Can't Take the Pressure!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students develop an understanding of air pressure by using candy or cookie wafers to model how it changes with altitude, by comparing its magnitude to gravitational force per unit area, and by observing its magnitude with an aluminum can crushing experiment.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
Date Added:
10/14/2015
I Don't Believe My Eyes!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students develop their understanding of the effects of invisible air pollutants with a rubber band air test, a bean plant experiment and by exploring engineering roles related to air pollution. In an associated literacy activity, students develop visual literacy and write photograph captions. They learn how images are manipulated for a powerful effect and how a photograph can make the invisible (such as pollutants) visible. Note: You may want to set up the activities for Air Pollution unit, Lessons 2 and 3, simultaneously as they require extended data collection time and can share collection sites.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
Imagine Life without Friction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of inertia and its application to a world without the force of friction acting on moving objects. When an object is in motion, friction tends to be the force that acts on this object to slow it down and eventually come to a stop. By severely limiting friction through the use of the hover pucks, students learn that the energy of one moving puck is transferred directly to another puck at rest when they collide. Students learn the concept of the conservation of energy via a "collision," and will realize that with friction, energy is converted primarily to heat to slow and stop an object in motion. In the associated activity, "The Puck Stops Here," students will investigate the frictional force of an object when different materials are placed between the object and the ground. This understanding will be used to design a new hockey puck for the National Hockey League.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anne Vanderschueren
Greg Larkin
Date Added:
09/18/2014
Impact Craters
Unrestricted Use
CC BY
Rating
0.0 stars

The students will learn about recent meteor strikes and the effects they can have. They will then examine their significance in the history of the planet, and what they do to the surface of a planet when forming a crater. The students will then experimentally determine how the size and impact velocity of a meteorite determine the size of the crater.

Subject:
Astronomy
Physical Science
Material Type:
Activity/Lab
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Christian Eistrup
Ronan Smith
Date Added:
07/07/2021
In and Out Reactor
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about material balances, a fundamental concept of chemical engineering. They use stoichiometry to predict the mass of carbon dioxide that escapes after reacting measured quantities of sodium bicarbonate with dilute acetic acid. Students then produce the reactions of the chemicals in a small reactor made from a plastic water bottle and balloon.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Prager
Megan Schroeder
Stephanie Rivale
Date Added:
09/18/2014
Induced EMF in a coil of wire
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a simple set up consisting of a coil of wire and a magnet to visualize induced EMF. First, students move a coil of wire near a magnet and observe the voltage that results. They then experiment with moving the wire, magnet, and a second, current carrying coil. Students connect the coil to a circuit and the current from the induced EMF charges a conductor.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Inference from Data and Models, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamental methods used for exploring the information content of observations related to kinematical and dynamical models. Basic statistics and linear algebra for inverse methods including singular value decompositions, control theory, sequential estimation (Kalman filters and smoothing algorithms), adjoint/Pontryagin principle methods, model testing, etc. Second part focuses on stationary processes, including Fourier methods, z-transforms, sampling theorems, spectra including multi-taper methods, coherences, filtering, etc. Directed at the quantitative combinations of models, with realistic, i.e. sparse and noisy observations.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Wunsch, Carl
Date Added:
01/01/2005
An Inflated Impression of Mars
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use scaling from real-world data to obtain an idea of the immense size of Mars in relation to the Earth and the Moon, as well as the distances between them. Students calculate dimensions of the scaled versions of the planets, and then use balloons to represent their relative sizes and locations.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Inleiding Watermanagement
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Hoofdpunten: De cursus geeft een kennismaking met infrastructuur voor Watermanagement. Voor Waterbeheer ligt de focus op ontwatering, afwatering, wateraanvoer en het ontwerpen van eenvoudige aan- en afvoersystemen. Voor Civiele gezondheidstechniek ligt de focus op Gezondheidstechniek en volksgezondheid, drinkwatervoorziening en Integraal waterbeheer. Leerdoelen: Begrip van basisopzet infrastructuur Watermanagement. Eenvoudige systemen kunnen ontwerpen.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J. C. van Dijk
N.C. van de Giesen
Date Added:
07/14/2021