Updating search results...

Search Resources

1859 Results

View
Selected filters:
  • Engineering
The Force of Friction
Read the Fine Print
Educational Use
Rating
0.0 stars

In the first of two lessons of this curricular unit, students are introduced to the concept of friction as a force that impedes motion when two surfaces are in contact. Student teams use spring scales to drag objects, such as a ceramic coffee cup, along a table top or the floor, measuring the frictional force that exists between the moving object and the surface it slides on. By modifying the bottom surface of the object, students find out what kinds of surfaces generate more or less friction. They also discover that both static and kinetic friction are involved when an object initially at rest is caused to slide across a surface. In the second lesson of the unit, students design and conduct experiments to determine the effects of weight and surface area on friction. They discover that weight affects normal friction (the friction that results from surface roughness), but for very smooth surfaces, the friction due to molecular attraction is affected by contact area.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Force on a Current Carrying Wire
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a simple set up consisting of a current carrying wire and a magnet to explore the forces which enable biomedical imaging. In doing so, students run a current through a wire and then hold magnets in various positions to establish and explore the magnetic force acting on the wire. They move the magnets and change the current in the wire to explore how the force changes.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Forces and Graphing
Read the Fine Print
Educational Use
Rating
0.0 stars

Use this activity to explore forces acting on objects, practice graphing experimental data, and introduce the algebra concepts of slope and intercept of a line. A wooden 2 x 4 beam is set on top of two scales. Students learn how to conduct an experiment by applying loads at different locations along the beam, recording the exact position of the applied load and the reaction forces measured by the scales at each end of the beam. In addition, students analyze the experiment data with the use of a chart and a table, and model/graph linear equations to describe relationships between independent and dependent variables.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ivanka Todorova
Jed Lyons
John Brader
Veronica Addison
Date Added:
09/18/2014
Forces on the Human Molecule
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct several simple lab activities to learn about the five fundamental load types that can act on structures: tension, compression, shear, bending and torsion. In this activity, students play the role of molecules in a beam that is subject to various loading schemes.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Forensic Engineering: Learning from Failures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

What do collapsed buildings, infected hospital patients, and crashed airplanes have in common? If you know the causes of these events and conditions, they can all be prevented.

In this course, you will learn how to use the TU Delft mind-set to investigate the causes of such events so you can prevent them in the future.

When, for instance, hundreds of hospital patients worldwide got infected after having gall bladder treatments, forensic engineering helped reveal how the design and use of the medical instruments could cause such widespread infections. As a result, changes were made to the instrument design and the procedural protocols in hospitals. Learning from failure in this case benefitted patient health and safety across the world.

After taking this course you will have an understanding of failures and the investigation processes used to find their causes. You will learn how to apply lessons gained from investigating previous failures into new designs and procedures.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Arjo Loeve
Karel Terwel
Michiel Schuurman
Date Added:
07/14/2021
Forms of Linear Equations
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about four forms of equations: direct variation, slope-intercept form, standard form and point-slope form. They graph and complete problem sets for each, converting from one form of equation to another, and learning the benefits and uses of each.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey McKelvey
Date Added:
09/18/2014
Form vs. Function
Read the Fine Print
Educational Use
Rating
0.0 stars

Students take a closer look at cars and learn about some characteristics that affect their energy efficiency, including rolling resistance and the aerodynamics of shape and size. They come to see how vehicles are one example of a product in which engineers are making changes and improvements to gain greater efficiency and thus require less energy to operate.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eszter Horanyi
Janet Yowell
Date Added:
10/14/2015
Form vs. Function
Read the Fine Print
Educational Use
Rating
0.0 stars

Students model and design the sound environment for a room. They analyze the sound performance of different materials that represent wallpaper, thick curtains, and sound-absorbing panels. Then, referring to the results of their analysis, they design another room based on certain specifications, and test their designs.

Subject:
Applied Science
Architecture and Design
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
Date Added:
10/14/2015
Fortified Breakfast
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will learn that minerals are a necessary part of our diet. They will learn that different minerals have different functions in the body. More specifically, they will discover that iron is necessary to carry oxygen around the body. In the associated activity, students will design a process that removes the most iron from the cereal.

Subject:
Applied Science
Engineering
Life Science
Nutrition
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Liz Harper
Date Added:
09/18/2014
Fossil Fondue
Read the Fine Print
Educational Use
Rating
0.0 stars

To understand how fossils are formed, students model the process of fossilization by making fossils using small toy figures and melted chocolate. They extend their knowledge to the many ways that engineers aid in the study of fossils, including the development of tools and technologies for determining the physical and chemical properties of fossilized organisms, and how those properties tell a story of our changing world.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denise W. Carlson
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/26/2008
Foucault Pendulum
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the Foucault pendulum an engineering tool used to demonstrate and measure the Earth's rotation. Student groups create small experimental versions, each comprised of a pendulum and a video camera mounted on a rotating platform actuated by a LEGO MINDSTORMS(TM) NXT motor. When the platform is fixed, the pendulum motion forms a line, as observed in the recorded video. When the rotating, the pendulum's motion is observed as a set of spirals with a common center. Observing the patterns that the pendulum bob makes when the platform is rotating provides insight as to how a full-size Foucault pendulum operates. It helps students understand some of the physical phenomena induced by the Earth's rotation, as well as the tricky concept of how the perception of movement varies, depending on one's frame of reference.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeffrey Laut
Violet Mwaffo
Date Added:
09/18/2014
Frameworks and Models in Engineering Systems / Engineering System Design, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sussman, Joseph
Date Added:
01/01/2007
Fresh or Salty?
Read the Fine Print
Educational Use
Rating
0.0 stars

Between 70 and 75% of the Earth's surface is covered with water and there exists still more water in the atmosphere and underground in aquifers. In this lesson, students learn about water bodies on the planet Earth and their various uses and qualities. They will learn about several ways that engineers are working to maintain and conserve water sources. They will also think about their role in water conservation.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Sara Born
Date Added:
09/18/2014
Friction Force
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use LEGO® MINDSTORMS® robotics to help conceptualize and understand the force of friction. Specifically, they observe how different surfaces in contact result in different frictional forces. A LEGO robot is constructed to pull a two-wheeled trailer made of LEGO parts. The robot is programmed to pull the trailer 10 feet and trial runs are conducted on smooth and textured surfaces. The speed and motor power of the robot is kept constant in all trials so students observe the effect of friction between various combinations of surfaces and trailer wheels. To apply what they learn, students act as engineers and create the most effective car by designing the most optimal tires for given surface conditions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
From Lake to Tap
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will use a tutorial on the U.S. Environmental Protection Agency's website to learn about how surface water is treated to make it safe to drink.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Janet Yowell
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
09/18/2014
From Psychology to Logic: Learning Computer Programming in the Kitchen
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson focuses on the biggest problem faced by any young programmer - i.e. the LOGIC BUILDING required while solving a particular problem. With programming, the solution to a particular problem lies in the head, but one is unable to convert it into a computer program. This is because the thought processes of a human are much faster than the sense of observation. If this thought process could be slowed down, logic to solve a programming problem could be found very easily. This lesson focuses on converting this psychological thought process in a step-by -step logic fashion that a computer program can understand. This lesson is recorded in a kitchen where the basic programming concepts are taught by giving examples from the process of making a mango milk shake. This lesson teaches the 4 following techniques: 1) Swapping two variables by swapping a glass of milk with a glass of crushed ice; 2) Finding max from an array by finding the biggest mango; 3) Sorting an array by arranging the jars; and 4) Understanding the concept of a function, parameters and return type by comparing it with the blender/juicer. The lesson targets those students who know the syntax of programming in any language (C or GWBASIC preferred), but are unable to build the logic for a program. It can be taught in a class of 45 to 50 minutes.

This lesson is also available in Mandarin Chinese.

Subject:
Applied Science
Engineering
Psychology
Social Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Tanzeela Ali
Date Added:
07/02/2021
From Sunlight to Electric Current
Read the Fine Print
Educational Use
Rating
0.0 stars

The lesson will first explore the concept of current in electrical circuits. Current will be defined as the flow of electrons. Photovoltaic (PV) cell properties will then be introduced. Generally constructed of silicon, photovoltaic cells contain a large number of electrons BUT they can be thought of as "frozen" in their natural state. A source of energy is required to "free" these electrons if we wish to create current. Light from the sun provides this energy. This will lead to the principle of "Conservation of Energy." Finally, with a basic understanding of the circuits through Ohm's law, students will see how the energy from the sun can be used to power everyday items, including vehicles. This lesson utilizes the engineering design activity of building a solar car to help students learn these concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Rahmin Sarabi
Date Added:
09/18/2014
Fuel Mystery Dis-Solved!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the simulated use of solid rocket fuel by using an antacid tablet. Students observe the effect that surface area and temperature has on chemical reactions. Also, students compare the reaction time using two different reactants: water and vinegar. Finally, students report their results using a bar graph.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Fueling Sustainability: Engineering Microbial Systems for Biofuel Production, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The need to identify sustainable forms of energy as an alternative to our dependence on depleting worldwide oil reserves is one of the grand challenges of our time. The energy from the sun converted into plant biomass is the most promising renewable resource available to humanity. This seminar will examine each of the critical steps along the pathway towards the conversion of plant biomass into ethanol. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
O'Malley, Michelle
Date Added:
01/01/2011
Fun Look at Material Science
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the multidisciplinary field of material science. Through a class demo and PowerPoint® presentation, they learn the basic classes of materials (metals, ceramics, polymers, composites) and how they differ from one another, considering concepts such as stress, strain, ductile, brittle, deformation and fracture. Practical examples help students understand how the materials are applied, and further information about specific research illustrates how materials and material science are useful in space exploration. A worksheet and quiz are provided.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Date Added:
09/18/2014