Updating search results...

Search Resources

733 Results

View
Selected filters:
  • Physics
Bone Mineral Density and Logarithms
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine an image produced by a cabinet x-ray system to determine if it is a quality bone mineral density image. They write in their journals about what they need to know to be able to make this judgment. Students learn about what bone mineral density is, how a BMD image can be obtained, and how it is related to the x-ray field. Students examine the process used to obtain a BMD image and how this process is related to mathematics, primarily through logarithmic functions. They study the relationship between logarithms and exponents, the properties of logarithms, common and natural logarithms, solving exponential equations and Beer's law.

Subject:
Applied Science
Engineering
Life Science
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Date Added:
09/18/2014
Bouncing Balls
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine how different balls react when colliding with different surfaces, giving plenty of opportunity for them to see the difference between elastic and inelastic collisions, learn how to calculate momentum, and understand the principle of conservation of momentum.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Bouncing Balls (for High School)
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students examine how different balls react when colliding with different surfaces. Also, they will have plenty of opportunity to learn how to calculate momentum and understand the principle of conservation of momentum.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Ben Sprague
Chris Yakacki
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Bubbles and Biosensors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work in groups to create soap bubbles on a smooth surface, recording their observations from which they formulate theories to explain what they see (color swirls on the bubble surfaces caused by refraction). Then they apply this theory to thin films in general, including porous films used in biosensors, listing factors that could change the color(s) that become visible to the naked eye, and learn how those factors can be manipulated to give information on gene detection. Finally (by experimentation or video), students see what happens when water is dropped onto the surface of a Bragg mirror.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Build Your Own Night-Light with Arduino
Read the Fine Print
Educational Use
Rating
0.0 stars

Whether you want to light up a front step or a bathroom, it helps to have a light come on automatically when darkness falls. For this maker challenge, students create their own night-lights using Arduino microcontrollers, photocells and (supplied) code to sense light levels and turn on/off LEDs as they specify. As they build, test, and control these night-lights, they learn about voltage divider circuits and then experience the fundamental power of microcontrollers—controlling outputs (LEDs) based on sensor (photocell) input readings and if/then/else commands. Then they are challenged to personalize (and complicate) their night-lights—such as by using delays to change the LED blinking rate to reflect the amount of ambient light, or use many LEDs and several if/else statements with ranges to create a light meter. The possibilities are unlimited!

Subject:
Applied Science
Computer Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Daniel Godrick
Date Added:
10/11/2017
Build a Charge Detector
Read the Fine Print
Educational Use
Rating
0.0 stars

In this hands-on activity, students explore the electrical force that takes place between two objects. Each student builds an electroscope and uses the device to draw conclusions about objects' charge intensity. Students also determine what factors influence electric force.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
10/14/2015
Building Arduino Light Sculptures
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to design their own small-sized prototype light sculptures to light up a hypothetical courtyard. To accomplish this, they use Arduino microcontrollers as the “brains” of the projects and control light displays composed of numerous (3+) light-emitting diodes (LEDs). With this challenge, students further their learning of Arduino fundamentals by exploring one important microcontroller capability—the control of external circuits. The Arduino microcontroller is a powerful yet easy-to-learn platform for learning computer programing and electronics. LEDs provide immediate visual success/failure feedback, and the unlimited variety of possible results are dazzling!

Subject:
Applied Science
Computer Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Daniel Godrick
Date Added:
10/09/2017
Building Roller Coasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build their own small-scale model roller coasters using pipe insulation and marbles, and then analyze them using physics principles learned in the associated lesson. They examine conversions between kinetic and potential energy and frictional effects to design roller coasters that are completely driven by gravity. A class competition using different marbles types to represent different passenger loads determines the most innovative and successful roller coasters.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Scott Liddle
Date Added:
10/14/2015
Building a Fancy Spectrograph
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create and decorate their own spectrographs using simple materials and holographic diffraction gratings. A holographic diffraction grating acts like a prism, showing the visual components of light. After building the spectrographs, students observe the spectra of different light sources as homework.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Building an Electromagnet
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and construct electromagnets that must pick up 10 staples. They begin with only minimal guidance, and after the basic concept is understood, are informed of the properties that affect the strength of that magnet. They conclude by designing their own electromagnets to complete the challenge of separating scrap steel from scrap aluminum for recycling, and share it with the class.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
10/14/2015
Bulbs & Batteries Side by Side
Read the Fine Print
Educational Use
Rating
0.0 stars

We are surrounded everyday by circuits that utilize "in parallel" and "in series" circuitry. Complicated circuits designed by engineers are made of many simpler parallel and series circuits. In this hands-on activity, students build parallel circuits, exploring how they function and their unique features.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise W. Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
10/14/2015
Buoyancy
Unrestricted Use
CC BY
Rating
0.0 stars

When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces, and you can modify the properties of the blocks and the fluid.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Jonathan Olson
Kathy Perkins
Kelly Lancaster
Noah Podolefsky
Sam Reid
Trish Loeblein
Wendy Adams
Date Added:
09/30/2010
Buoyancy (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces, and you can modify the properties of the blocks and the fluid.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Jonathan Olson
Kathy Perkins
Kelly Lancaster
Noah Podolefsky
Patricia Loblein
Sam Reid
Wendy Adams
Date Added:
10/01/2010
Buoyant Boats
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct a simple experiment to see how the water level changes in a beaker when a lump of clay sinks in the water and when the same lump of clay is shaped into a bowl that floats in the water. They notice that the floating clay displaces more water than the sinking clay does, perhaps a surprising result. Then they determine the mass of water that is displaced when the clay floats in the water. A comparison of this mass to the mass of the clay itself reveals that they are approximately the same.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Bury Your Trash!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students bury various pieces of trash in a plotted area of land outside. After two to three months, they uncover the trash to investigate what types of materials biodegrade in soil.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Roarke Horstmeyer
Date Added:
10/14/2015
Butting Heads
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

8th grade student will apply Newton’s Laws to design, test and evaluate materials to create the most protective helmet for an activity of their choice. Students will use force sensors and Vernier software to analyze the force reduction for their helmets. The culmination of this project is for students to write and present a sales pitch to promote their helmet to their peers at an annual "conference."

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Author:
Erik Wright
Johannah Withrow-Robinson
Zach Adler
Date Added:
07/07/2021
Calculus-Based Physics I
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Calculus-Based Physics is an introductory physics textbook designed for use in the two-semester introductory physics course typically taken by science and engineering students.

Subject:
Calculus
Mathematics
Physical Science
Physics
Material Type:
Textbook
Provider:
Saint Anselm College
Author:
Jeffrey Schnick
Date Added:
07/07/2021
Calculus-Based Physics II
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

A free, two-volume, on-line, editable, introductory calculus based physics textbook in PDF™ and Microsoft Word™ format. Also provides ancillary materials including video solutions to physics problems and Blackboard™ quizzes with extensive feedback.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Saint Anselm College
Author:
Jeffrey Schnick
Date Added:
11/19/2005
Can You Hear Me Now?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply their knowledge of linear regression and design to solve a real-world challenge to create a better packing solution for shipping cell phones. They use different materials, such as cardboard, fabric, plastic, and rubber bands to create new “composite material” packaging containers. Teams each create four prototypes made of the same materials and constructed in the same way, with the only difference being their weights, so each one is fabricated with a different amount of material. They test the three heavier prototype packages by dropping them from different heights to see how well they protect a piece of glass inside (similar in size to iPhone 6). Then students use linear regression to predict from what height they can drop the fourth/final prototype of known mass without the “phone” breaking. Success is not breaking the glass but not underestimating the height by too much either, which means using math to accurately predict the optimum drop height.

Subject:
Algebra
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Abbie Morneault
Brett Doudican
Kellee Callahan
Date Added:
08/02/2017